[1] 毛 鑫,沈 钢.基于轮径差函数的曲线钢轨打磨廓形设计[J].同济大学学报(自然科学版),2018,46(2):253-259.
MAO Xin, SHEN Gang. Curved rail grinding profile design based on rolling radii difference function[J]. Journal of Tongji University(Natural Science), 2018, 46(2): 253-259.(in Chinese)
[2] 徐井芒,王 平,徐 浩,等.尖轨廓形对地铁道岔使用寿命的影响研究[J].铁道学报,2014,36(3):75-79.
XU Jing-mang, WANG Ping, XU Hao, et al. Study on impact of switch rail profile on service life of subway switches[J]. Journal of the China Railway Society, 2014, 36(3): 75-79.(in Chinese)
[3] 徐井芒,王 平,曾晓辉,等.地铁道岔轨顶坡对尖轨磨耗的影响[J].中南大学学报(自然科学版),2014,45(8):2899-2904.
XU Jing-mang, WANG Ping, ZENG Xiao-hui, et al. Effect of rail top slope on subway switch rail wear[J]. Journal of Central South University(Science and Technology), 2014, 45(8): 2899-2904.(in Chinese)
[4] XU Jing-mang, WANG Jian, WANG Ping, et al. Study on the derailment behaviour of a railway wheelset with solid axles in a railway turnout[J]. Vehicle System Dynamics, 2020, 58(1): 123-143.
[5] 宗聪聪,张 让,周云飞,等.道岔尖轨段打磨目标廓形优化研究[J].城市轨道交通研究,2019,22(1):132-135.
ZONG Cong-cong,ZHANG Rang,ZHOU Yun-fei,et al. Optimization of grinding profile in switch point rail section[J]. Urban Mass Transit, 2019, 22(1): 132-135.(in Chinese)
[6] 陈迪来,沈 钢,毛 鑫.基于轮轨接触特征的转辙器区钢轨廓形设计[J].同济大学学报(自然科学版),2019,47(9):1341-1349.
CHEN Di-lai, SHEN Gang, MAO Xin. Design of rail profile in switch area based on wheel/rail contact characteristics[J]. Journal of Tongji University(Natural Science), 2019, 47(9): 1341-1349.(in Chinese)
[7] 赵向东.基于轮轨法向间隙的道岔钢轨廓形优化方法[J].铁道建筑,2018,58(3):83-86.
ZHAO Xiang-dong. Optimization method for turnout rail profile based on normal gap between wheel and rail[J]. Railway Engineering, 2018, 58(3): 83-86.(in Chinese)
[8] NIELSEN J C O, PALSSON B A, TORSTENSSON P T. Switch panel design based on simulation of accumulated rail damage in a railway turnout[J]. Wear, 2016, 366/367: 241-248.
[9] 林凤涛,胡伟豪.磨耗钢轨经济性打磨型面研究[J].铁道科学与工程学报,2020,17(10):2493-2502.
LIN Feng-tao, HU Wei-hao. Study on the economical grinding surface of wear rail[J]. Journal of Railway Science and Engineering, 2020, 17(10): 2493-2502.(in Chinese)
[10] LIN Feng-tao, ZHOU Shuang, DONG Xiao-qing, et al.
Design method of LM thin flange wheel profile based on NURBS[J]. Vehicle System Dynamics, 2021, 59(1): 17-32.
[11] 文永蓬,郑晓明,吴爱中,等.基于BESO算法的城市轨道车轮拓扑优化[J].机械工程学报,2020,56(10):191-199.
WEN Yong-peng, ZHENG Xiao-ming, WU Ai-zhong, et al. Topology optimization of urban rail wheel based on BESO algorithm [J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199.(in Chinese)
[12] 郑晓明,文永蓬,尚慧琳,等.考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J].交通运输工程学报,2019,19(5):84-95.
ZHENG Xiao-ming, WEN Yong-peng, SHANG Hui-lin, et al. Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95.(in Chinese)
[13] 李 浩,赵国堂,孙加林.动车组侧向通过9号道岔动力特性仿真研究[J].中国铁道科学,2017,38(6):30-36.
LI Hao, ZHAO Guo-tang, SUN Jia-lin. Simulation research on dynamic characteristics of EMU passing through No.9 turnout[J]. China Railway Science, 2017, 38(6): 30-36.(in Chinese)
[14] 杨 亮,王树国,游彦辉,等.城市轨道交通7号单开道岔结构优化与设计[J].铁道建筑,2020,60(4):84-89.
YANG Liang, WANG Shu-guo, YOU Yan-hui, et al.Optimization and design of single turnout structure of urban rail transit[J]. Railway Engineering, 2020, 60(4): 84-89.(in Chinese)
[15] 钱 瑶,王 平,苏 谦,等.轨底坡对高速铁路轮轨接触行为影响分析[J].铁道工程学报,2018,35(3):18-25.
QIAN Yao, WANG Ping, SU Qian, et al. Effect analysis of rail cant on the wheel-rail contact behavior of high-speed railway[J]. Journal of Railway Engineering Society, 2018, 35(3): 18-25.(in Chinese)
[16] WANG Ping, XU Jing-mang, XIE Kai-ze, et al. Numerical simulation of rail profiles evolution in the switch panel of a railway turnout[J]. Wear, 2016, 366/367: 105-115.
[17] 王 健,马晓川,陈嘉胤,等.高速铁路CHN60N钢轨与不同车轮踏面匹配性能研究[J].铁道学报,2017,39(12):94-101.
WANG Jian, MA Xiao-chuan, CHEN Jia-yin, et al. Study of matching performance of CHN60N rail with different wheel treads in high-speed railway[J]. Journal of the China Railway Society, 2017, 39(12): 94-101.(in Chinese)
[18] 陈 嵘,陈嘉胤,王 平,等.轮径差对道岔区轮轨接触几何和车辆过岔走行性能的影响[J].铁道学报,2018,40(5):123-130.
CHEN Rong, CHEN Jia-yin, WANG Ping, et al. Effect of wheel diameter difference on wheel-rail contact geometry and vehicle running behavior in turnout area[J]. Journal of the China Railway Society, 2018, 40(5): 123-130.(in Chinese)
[19] 任尊松,刘志明,金学松.心轨轨顶降低值对轮岔动态相互作用影响研究[J].铁道学报,2009,31(2):79-83.
REN Zun-song, LIU Zhi-ming, JIN Xue-song. Study on the influence of the nose rail height on the wheel-turnout interaction dynamics[J]. Journal of the China Railway Society, 2009, 31(2): 79-83.(in Chinese)
[20] WAN C, MARKINE V L, SHEVTSOV I Y. Improvement of vehicle-turnout interaction by optimising the shape of crossing nose[J]. Vehicle System Dynamics, 2014, 52(11): 1517-1540.
[21] PALSSON B A, NIELSEN J C O. Wheel-rail interaction and damage in switches and crossings[J]. Vehicle System Dynamics, 2012, 50(1): 43-58.
[22] PALSSON B A. A linear wheel-crossing interaction model[J]. Journal of Rail and Rapid Transit, 2018, 232(10): 2431-2443.
[23] PALSSON B A. Design optimisation of switch rails in railway
turnouts[J]. Vehicle System Dynamics, 2013, 51(10): 1619-1639.
[24] CASANUEVA C, DOULGERAKIS E, JÖNSSON P A, et al. Influence of switches and crossings on wheel profile evolution in freight vehicles[J]. Vehicle System Dynamics, 2014, 52(S1): 317-337.
[25] EKBERG A, AKESSON B, KABO E. Wheel/rail rolling contact fatigue-probe, predict, prevent[J]. Wear, 2014, 314(1/2): 2-12.
[26] EKBERG A, KABO E, ANDERSON H. An engineering
model for prediction of rolling contact fatigue of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909.