[1] 董永刚,仪 帅,黄鑫磊,等.重载列车紧急制动过程车轮踏面疲劳裂纹萌生寿命预测[J].中国铁道科学,2021,42(5):123-131.
DONG Yong-gang, YI Shuai, HUANG Xin-lei, et al. Prediction of fatigue crack initiation life of wheel tread during emergency braking of heavy haul train[J]. China Railway Science, 2021, 42(5): 123-131.(in Chinese)
[2] 马晓川,刘林芽,冯青松,等.铁路钢轨裂纹萌生的键型近场动力学预测模型[J].交通运输工程学报,2021,21(3):228-237.
MA Xiao-chuan, LIU Lin-ya, FENG Qing-song, et al. Prediction model of rail crack initiation using bond-based peridynamics theory[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 228-237.(in Chinese)
[3] 任安超,朱 敏,费俊杰,等. U75V和U68CrCu钢轨钢早期腐蚀机理研究[J].中国铁道科学,2014,35(5):7-12.
REN An-chao, ZHU Min, FEI Jun-jie, et al. Early corrosion mechanism of U75V and U68CrCu rail steel[J]. China Railway Science, 2014, 35(5): 7-12.(in Chinese)
[4] 昝晓东,李孝滔,邢帅兵,等.疲劳裂纹扩展引起的钢轨表面剥离研究[J].铁道科学与工程学报,2018,15(12):3082-3088.
ZAN Xiao-dong, LI Xiao-tao, XING Shuai-bing, et al. Analysis of rail surface shelling resulting from fatigue crack propagation[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3082-3088.(in Chinese)
[5] 曹世豪,李佳莉,杨荣山,等.滚动接触作用下钢轨表面裂纹扩展机理分析[J].华中科技大学学报(自然科学版),2017,45(4):11-15.
CAO Shi-hao, LI Jia-li, YANG Rong-shan, et al. Propagation mechanism analysis of crack on rail surface under rolling contact[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(4): 11-15.(in Chinese)
[6] 肖 乾,王丹红,陈道云,等.高速列车轮轨激励作用机理及其影响综述[J].交通运输工程学报,2021,21(3):93-109.
XIAO Qian, WANG Dan-hong, CHEN Dao-yun, et al. Review on mechanism and influence of wheel-rail excitation of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 93-109.(in Chinese)
[7] 敬 霖,刘 凯.车轮踏面缺陷引起的轮轨动态响应综述[J].交通运输工程学报,2021,21(1):285-315.
JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 285-315.(in Chinese)
[8] 赵 鑫,温泽峰,王衡禹,等.中国轨道交通轮轨滚动接触疲劳研究进展[J].交通运输工程学报,2021,21(1):1-35.
ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 1-35.(in Chinese)
[9] 周桂源,何成刚,文 广,等.高速和低速工况下列车车轮的损伤行为对比[J].机械工程材料,2016,40(10):6-10,64.
ZHOU Gui-yuan, HE Cheng-gang, WEN Guang, et al. Comparison of damage behaviors of railway wheel under high and low speed conditions[J]. Materials for Mechanical Engineering, 2016, 40(10): 6-10, 64.(in Chinese)
[10] 周小林,向延念,陈秀方.U71Mn 50 kg·m-1普通碳素钢钢轨疲劳裂纹扩展速率试验研究[J].中国铁道科学,2004,25(3):87-91.
ZHOU Xiao-lin, XIANG Yan-nian, CHEN Xiu-fang. Test and study of fatigue fracture propagation of U71Mn 50 kg·m-1 ordinary carbon steel rail[J]. China Railway Science, 2004, 25(3): 87-91.(in Chinese)
[11] 马明阳.高速列车车轮磨耗预测及关键影响因素仿真分析[D].北京:中国铁道科学研究院,2016.
MA Ming-yang. Prediction and key factors simulation on wheel wear of high-speed train[D].Beijing: China Academy of Railway Sciences, 2016.(in Chinese)
[12] 尹波润,文永蓬,尚慧琳.基于元胞自动机方法的地铁车轮磨损动态建模与仿真[J].机械工程学报,2019,55(2):135-146.
YIN Bo-run, WEN Yong-peng, SHANG Hui-lin. Dynamic modeling and simulation of metro wheel wear based on cellular automata method[J]. Journal of Mechanical Engineering, 2019, 55(2): 135-146.(in Chinese)
[13] 申永代.U78CrV钢轨非典型线状剥离掉块伤损分析[J].金属材料与冶金工程,2019,47(5):26-31.
SHEN Yong-dai. Damage analysis of atypical linear exfoliations on U78CrV rails[J]. Metal Materials and Metallurgy Engineering, 2019, 47(5): 26-31.(in Chinese)
[14] ZHANG Xin, HAO Qiu-shi, WANG Kang-wei, et al. An
investigation on acoustic emission detection of rail crack in actual application by chaos theory with improved feature detection method[J]. Journal of Sound and Vibration, 2018, 436: 165-182.
[15] ZHANG Xin, CUI Yi-ming, WANG Yan, et al. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS[J]. Mechanical Systems and Signal Processing, 2018, 99: 420-433.
[16] PENG Jian-ping, TIAN Gui-yun, WANG Li, et al. Investigation into eddy current pulsed thermography for rolling contact fatigue detection and characterization[J]. NDT and E International, 2015, 74: 72-80.
[17] PATHAK M, ALAHAKOON S, SPIRYAGIN M, et al.
Rail foot flaw detection based on a laser induced ultrasonic guided wave method[J]. Measurement, 2019, 148: 106922.
[18] NAGATO K, SHINTANI K, HAMAGUCHI T, et al. Real-time detection of microcracks with floating giant-magnetoresistance sensor in twin-disk sliding tests[J]. CIRP Annals, 2017, 66(1): 539-542.
[19] 王 嵘,余祖俊,朱力强,等.基于导波速度的无缝钢轨应力检测方法[J].中国铁道科学,2018,39(2):18-27.
WANG Rong, YU Zu-jun, ZHU Li-qiang, et al. Detection method for stress in continuously welded rail based on guided wave velocity[J]. China Railway Science, 2018, 39(2): 18-27.(in Chinese)
[20] HU Hong-wei, ZOU Zhi-cheng, JIANG You-bao, et al. Finite element simulation and experimental study of residual stress testing using nonlinear ultrasonic surface wave technique[J]. Applied Acoustics, 2019, 154: 11-17.
[21] MAO Han-ying, ZHANG Yu-hua, MAO Han-ling, et al.
The fatigue damage evaluation of gear in sugarcane presser using higher order ultrasonic nonlinear coefficients[J]. Results in Physics, 2018, 10: 601-606.
[22] 万楚豪,刚 铁,刘 斌,等.高速铁路钢轨疲劳过程的超声非线性系数表征[J].中国铁道科学,2015,36(5):75-79.
WAN Chu-hao, GANG Tie, LIU Bin, et al. Characterization of nonlinear ultrasonic coefficient during rail fatigue process of high speed railway[J]. China Railway Science, 2015, 36(5): 75-79.(in Chinese)
[23] 李 伟,张璐莹,黄远航,等.碳纤维复合材料疲劳损伤的非线性超声评价方法[J].无损检测,2019,41(8):1-5.
LI Wei, ZHANG Lu-ying, HUANG Yuan-hang, et al. Nonlinear ultrasonic assessment method for fatigue damage of carbon fiber composite[J]. Nondestructive Testing, 2019, 41(8): 1-5.(in Chinese)
[24] HONG Ming, SU Zhong-qing, WANG Qiang, et al. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation[J]. Ultrasonics, 2014, 54: 770-778.
[25] PANTEA C, OSTERHOUDT C F, SINHA D N. Determination of acoustical nonlinear parameter β of water using the finite amplitude method[J]. Ultrasonics, 2013, 53(5): 1012-1019.
[26] LIU S M, BEST S, NEILD S A, et al. Measuring bulk
material nonlinearity using harmonic generation[J]. NDT and E International, 2012(48): 46-53.
[27] DENG Ming-xi. Analysis of second-harmonic generation of
Lamb modes using a modal analysis approach[J]. Journal of Applied Physics, 2003(94): 4152-4159.
[28] VEN DEN ABEELE K, SUTIN A, CARMELIET J, et al.
Micro-damage diagnostics using nonlinear elastic wave spectroscopy(NEWS)[J]. NDT and E International, 2001, 34(4): 239-248.
[29] 周 崎,刘莹峰,樊嘉琦,等.金属疲劳损伤的线性与非线性超声联合评价方法研究[J].中国测试,2021,47(5):151-155.
ZHOU Qi, LIU Ying-feng, FAN Jia-qi, et al. Research on linear and nonlinear ultrasonic joint evaluation method of metal fatigue damage[J]. China Measurement and Test, 2021, 47(5): 151-155.(in Chinese)
[30] BJØRNØ L. Introduction to nonlinear acoustics[J]. Physics Procedia, 2010, 3(1): 5-16.