[1] 丁叁叁,陈大伟,刘加利.中国高速列车研发与展望[J].力学学报,2021,53(1):35-50.
DING San-san, CHEN Da-wei, LIU Jia-li. Research, development and prospect of Chinese high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35-50.(in Chinese)
[2] 孙振旭,姚永芳,杨 焱,等.国内高速列车气动噪声研究进展概述[J].空气动力学学报,2018,36(3):385-397.
SUN Zhen-xu, YAO Yong-fang, YANG Yan, et al. Overview of the research progress on aerodynamic noise ofhigh speed trains in China[J]. Acta Aerodynamica Sinica, 2018, 36(3): 385-397.(in Chinese)
[3] THOMPSON D J, IGLESIAS E L, LIU Xiao-wan, et al. Recent developments in the prediction and control of aerodynamic noise from high-speed trains[J]. International Journal of Rail Transportation, 2015, 3(3): 119-150.
[4] CHIARIOTTI P, MARTARELLI M, CASTELLINI P.
Acoustic beamforming for noise source localization—reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2019, 120: 422-448.
[5] MELLET C, LETOURNEAUX F, POISSON F, et al. High speed train noise emission: latest investigation of the aerodynamic/rolling noise contribution[J]. Journal of Sound and Vibration, 2006, 293(3-5): 535-546.
[6] POISSON F, GAUTIER P E, LETOURNEAUX F. Noise sources for high speed trains: a review of results in the TGV case[C]∥SCHULTE-WERNING B, THOMPSON D, GAUTIER P E, et al. Proceedings of the 9th International Workshop on Railway Noise. Berlin: Springer, 2008: 71-77.
[7] 杨 妍,张 捷,何 宾,等.基于试验测试的桥梁与路堤区段高速列车车外噪声特性分析[J].机械工程学报,2019,55(20):188-197.
YANG Yan, ZHANG Jie, HE Bin, et al. Analysis on exterior noise characteristics of high-speed trains in bridges and embankments section based on experiment[J]. Journal of Mechanical Engineering, 2019, 55(20): 188-197.(in Chinese)
[8] 王东镇,葛剑敏.高速列车运行时不同转向架区噪声特性[J].交通运输工程学报,2020,20(4):174-183.
WANG Dong-zhen, GE Jian-min. Noise characteristics in different bogie areas during high-speed train operation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 174-183.(in Chinese)
[9] 朱雷威,郭建强,赵艳菊,等.高速列车转向架区气动噪声分离研究[J].振动、测试与诊断,2020,40(3):489-493.
ZHU Lei-wei, GUO Jian-qiang, ZHAO Yan-ju, et al. Study on separation of aerodynamic noise from high-speed train bogie[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(3): 489-493.(in Chinese)
[10] LAUTERBACH A, EHRENFRIED K, LOOSE S, et al.
Microphone array wind tunnel measurements of Reynolds number effects in high-speed train aeroacoustics[J]. International Journal of Aeroacoustics, 2012, 3/4(11): 411-446.
[11] IGLESIAS L E, THOMPSON D J, SMITH M G, et al. Anechoic wind tunnel tests on high speed train[J]. International Journal of Rail Transportation, 2017, 5(2): 87-109.
[12] 高 阳,王毅刚,王金田,等.声学风洞中的高速列车模型气动噪声试验研究[J].声学技术,2013,32(6):506-510.
GAO Yang, WANG Yi-gang, WANG Jin-tian, et al. Testing study of aerodynamic noise for high speed train model in aero-acoustic wind tunnel[J]. Technical Acoustics, 2013, 32(6): 506-510.(in Chinese)
[13] 郝南松.高速列车气动噪声风洞试验技术研究[C]∥中国航空学会.2016年度全国气动声学学术会议论文摘要集.北京:中国航空学会,2016:9-17.
HAO Nan-song. Study on wind tunnel test technology of aerodynamic noise of high speed train[C]∥Chinese Society of Aeronautics and Astronautics. Summary of the 2016 National Symposium on Aeroacoustics. Beijing: Chinese Society of Aeronautics and Astronautics, 2016: 9-17.(in Chinese)
[14] 陈 鹏,马瑞轩,张俊龙,等.5.5米×4米航空声学风洞低频压力脉动机理分析[C]∥中国航空学会.2016年度全国气动声学学术会议论文摘要集.北京:中国航空学会,2016:25.
CHEN Peng, MA Rui-xuan, ZHANG Jun-long, et al. Mechanism analysis of low frequency pressure pulsation in 5.5 m×4 m aero acoustic wind tunnel[C]∥Chinese Society of Aeronautics and Astronautics. Summary of the 2016 National Symposium on Aeroacoustics. Beijing: Chinese Society of Aeronautics and Astronautics, 2016: 25.(in Chinese)
[15] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20: 181-195.
[16] 朱剑月,雷震宇,李 莉.高速列车轮对气动噪声特性分析[J].机械工程学报,2019,55(14):69-79.
ZHU Jian-yue, LEI Zhen-yu, LI Li. Flow-induced noise behaviour around high-speed train wheelsets[J]. Journal of Mechanical Engineering, 2019, 55(14): 69-79.(in Chinese)
[17] LIGHTHILL M J. On sound generated aerodynamically. I: general theory[J]. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences Society, 1952, 211: 564-587.
[18] LIGHTHILL M J. On sound generated aerodynamically. Ⅱ: turbulence as a source of sound[J]. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, 1954, 222: 1-32.
[19] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, 1955, 231: 505-514.
[20] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surface in arbitrary motion[J]. Philosophical Transactions on the Royal Society of London, Series A: Mathematical and Physical Sciences, 1969, 264: 321-342.
[21] PHILLIPS O M. On the generation of sound by supersonic turbulent shear layers[J]. Journal of Fluid Mechanics, 1960, 9: 1-28.
[22] POWELL A. Theory of vortex sound[J]. Journal of Acoustic Society of America, 1964, 36: 177-195.
[23] HOWE M S. Theory of Vortex Sound[M]. Cambridge:
Cambridge University Press, 2003.
[24] LILLEY G M. Radiated noise from isotropic turbulence with applications to the theory of jet noise[J]. Journal of Sound and Vibration, 1996, 190(3): 463-476.
[25] DOAK P E. Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scopes of existing theories of aerodynamic noise, with special reference to supersonic jet noise[J]. Journal of Sound and Vibration, 1972, 25(2): 263-335.
[26] OBERMEIER F. On a new representation of aeroacoustic
source distribution: I. Gerneral theory[J]. Acoustica, 1979, 42(1): 56-61.
[27] OBERMEIER F. On a new representation of aeroacoustic
source distribution: Ⅱ. Two-dimensional model flows[J]. Acoustica, 1979, 42(1): 62-71.
[28] MULLER E A, OBERMEIER F. Vortex sound[J]. Fluid
Dynamics Research, 1988, 3(1-4): 43.
[29] FARASSAT F. Derivation of formulations 1 and 1A of
Farassat[R]. Washington DC:National Aeronautics and Space Administration, 2007.
[30] BRENTNER K S, FARASSAT F. Modelling aerodynamically generated sound of helicopter rotors[J]. Progress in Aerospace Sciences, 2003, 39: 83-120.
[31] NAJAFI-YAZDI A, BRÈS G A, MONGEAU L. An acoustic analogy formulation for moving sources in uniformly moving media[J]. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, 2011, 467: 144-165.
[32] 张亚东,张继业,李 田,等.拖车转向架气动噪声数值研究[J].机械工程学报,2016,52(16):106-116.
ZHANG Ya-dong, ZHANG Ji-ye, LI Tian, et al. Numerical research on aerodynamic noise of trailer bogie[J]. Journal of Mechanical Engineering, 2016, 52(16): 106-116.(in Chinese)
[33] 朱剑月,王毅刚,杨志刚,等.高速列车转向架区域裙板对流场与气动噪声的影响[J].同济大学学报(自然科学版),2017,45(10):1512-1521.
ZHU Jian-yue, WANG Yi-gang, YANG Zhi-gang, et al. Effect of bogie fairing on flow and aerodynamic noise behaviour around bogie of high-speed train[J]. Journal of Tongji University(Natural Science), 2017, 45(10): 1512-1521.(in Chinese)
[34] ZHU J Y, HU Z W, THOMPSON D J. The effect of a
moving ground on the flow and aerodynamic noise behaviour of a simplified high-speed train bogie[J]. International Journal of Rail Transportation, 2017, 5(2): 110-125.
[35] ZHU J Y. Aerodynamic noise of high-speed train bogies[D]. Southampton: University of Southampton, 2015.
[36] ZHU Chun-li, HEMIDA H, FLYNN D, et al. Numerical
simulation of the slipstream and aeroacoustic field around a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(6): 740-756.
[37] TAN X M, YANG Z G, TAN X M, et al. Vortex structures and aeroacoustic performance of the flow field of the pantograph[J]. Journal of Sound and Vibration, 2018, 432: 17-32.
[38] 刘加利,于梦阁,田爱琴,等.高速列车受电弓气动噪声特性研究[J].机械工程学报,2018,54(4):231-237.
LIU Jia-li, YU Meng-ge, TIAN Ai-qin, et al. Study on the aerodynamic noise characteristics of the pantograph of the high-speed train[J]. Journal of Mechanical Engineering, 2018, 54(4): 231-237.(in Chinese)
[39] 高 阳,李启良,陈 羽,等.高速列车头型近场与远场噪声预测[J].同济大学学报(自然科学版),2019,47(1):124-129.
GAO Yang, LI Qi-liang, CHEN Yu, et al. Prediction of near field and far field noise for high-speed train head shape[J]. Journal of Tongji University(Natural Science), 2019, 47(1): 124-129.(in Chinese)
[40] 莫晃锐,安 翼,刘青泉.高速列车车体长度对气动噪声影响的数值研究[J].力学学报,2019,51(5):1310-1320.
MO Huang-rui, AN Yi, LIU Qing-quan. Influence of the length of high-speed train on the far-field aeroacoustics characteristics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1310-1320.(in Chinese)
[41] ZHAO Yue-ying, YANG Zhi-gang, LI Qi-liang, et al. Analysis of the near-field and far-field sound pressure generated by high-speed trains pantograph system[J]. Applied Acoustics, 2020, 169: 1-15.
[42] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for
fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364.
[43] MASSON E, PARADOT N, ALLAIN E. The numerical
prediction of the aerodynamic noise of the TGV POS high-speed train power car[J]. Noise and Vibration Mitigation for Rail Transportation Systems, 2010, 118: 437-444.
[44] MESKINE M, PÉROT F, KIM M S, et al. Community noise prediction of digital high speed train using LBM[C]∥AIAA. 19th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2013: 1-17.
[45] 张 楠,李 亚,王志鹏,等.基于LES与Powell涡声理论的孔腔流激噪声数值模拟研究[J].船舶力学,2015,19(11):1393-1408.
ZHANG Nan, LI Ya, WANG Zhi-peng, et al. Numerical simulation on the flow induced noise of cavity by LES and Powell vortex sound theory[J]. Journal of Ship Mechanics, 2015, 19(11): 1393-1408.(in Chinese)
[46] 郑拯宇,李人宪.高速列车表面气动噪声偶极子声源分布数值分析[J].西南交通大学学报,2011,46(6):996-1002.
ZHENG Zheng-yu, LI Ren-xian. Numerical analysis of aerodynamic dipole source on high-speed train surface[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 996-1002.(in Chinese)
[47] 袁 磊,李人宪.高速列车气动噪声及影响[J].机械工程与自动化,2013(5):31-33,36.
YUAN Lei, LI Ren-xian. Aerodynamic noise of high-speed train and its impact[J]. Mechanical Engineering and Automation, 2013(5): 31-33, 36.(in Chinese)
[48] 罗 乐,郑 旭,吕 义,等.考虑受电弓系统的高速列车气动噪声分析[J].浙江大学学报(工学版),2015,49(11):2179-2185.
LUO Le, ZHENG Xu, LYU Yi, et al. Aerodynamic noise analysis of high-speed train with pantograph system[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(11): 2179-2185.(in Chinese)
[49] THOMPSON D J, SMITH M G, COUDRET F. Application of a component-based approach to modelling the aerodynamic noise from high-speed trains[C]∥Springer. Proceedings of the 10th International Workshop on Railway Noise. Berlin: Springer, 2010: 427-435.
[50] IGLESIAS E L, THOMPSON D J, SMITH M. Component-based model to predict aerodynamic noise from high-speed train pantographs[J]. Journal of Sound and Vibration, 2017, 394: 280-305.
[51] HASSAN M, LABRAGA L, KEIRSBULCK L. Aero-acoustic oscillations inside large deep cavities[C]∥The University of Queensland. 16th Australasian Fluid Mechanics Conference. Brisbane: The University of Queensland, 2007: 421-428.
[52] SCHULTE-WERNING B, HEINE C, MATSCHKE G.
Unsteady wake flow characteristics of high-speed trains[J]. PAMM Proceedings Applied Maths and Mechanics, 2003, 2(1): 332-333.
[53] BELL J R, BURTON D, THOMPSON A H, et al. Flow
topology and unsteady features in the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 61: 168-183.
[54] BELL J R, BURTON D, THOMPSON A H, et al. Dynamics of trailing vortices in the trailing vortices in the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 65: 238-256.
[55] 杨志刚,高 喆,陈 羽,等.裙板安装对高速列车气动性能影响的数值分析[J].计算机辅助工程,2010,19(3):16-21.
YANG Zhi-gang, GAO Zhe, CHEN Yu, et al. Numerical analysis on influence on aerodynamic performance of high-speed train caused by installation of skirt plates[J]. Computer Aided Engineering, 2010, 19(3): 16-21.(in Chinese)
[56] 黄 莎,杨明智,李志伟,等.高速列车转向架部位气动噪声数值模拟及降噪研究[J].中南大学学报,2011,42(12):3899-3904.
HUANG Sha, YANG Ming-zhi, LI Zhi-wei, et al. Aerodynamic noise numerical simulation and noise reduction of high speed train bogie section[J]. Journal of Central South University, 2011, 42(12): 3899-3904.(in Chinese)
[57] TORII A, ITO J. Development of the series 700 Shinkansen train-set, improvement of noise level[C]∥WCRR. Proceedings of World Congress on Railway Research 1999. Paris: WCRR, 1999: 1-10.
[58] KURITA T. Development of external-noise reduction technologies for Shinkansen high-speed trains[J]. Journal of Environment and Engineering, 2011, 6(4): 805-819.
[59] 肖友刚,时 彧.高速列车受电弓绝缘子的气动噪声计算及外形优化[J].铁道科学与工程学报,2012,9(6):72-76.
XIAO You-gang, SHI Yu. Aerodynamic noise calculation and shape optimization of high-speed train pantograph insulators[J]. Journal of Railway Science and Engineering, 2012, 9(6): 72-76.(in Chinese)
[60] 张亚东,韩 璐,李 明,等.高速列车受电弓气动噪声降噪[J].机械工程学报,2017,53(6):94-101.
ZHANG Ya-dong, HAN Lu, LI Ming, et al. Reduction of aerodynamic noise of high-speed train pantograph[J]. Journal of Mechanical Engineering, 2017, 53(6): 94-101.(in Chinese)
[61] 徐志龙,刘海涛,王超文,等.高速列车受电弓杆件减阻降噪研究分析[J].华东交通大学学报,2020,37(2):1-6.
XU Zhi-long, LIU Hai-tao, WANG Chao-wen, et al. Study on drag and noise reduction of pantograph rods in high speed train[J]. Journal of East China Jiaotong University, 2020, 37(2): 1-6.(in Chinese)
[62] 黄凯莉,袁天辰,杨 俭,等.基于射流的高速列车受电弓空腔气动噪声降噪方法[J].铁道学报,2020,42(7):50-56.
HUANG Kai-li, YUAN Tian-chen, YANG Jian, et al. Approach of reduction of aerodynamic noise of pantograph cavity of high-speed train based on jet[J]. Journal of the China Railway Society, 2020, 42(7): 50-56.(in Chinese)
[63] SAGAWA A, ONO S, HIDETOSHI H, et al. Aeroacoustic noise generated from high-speed trains in Japan[C]∥AIAA. Aeroacoustics Conference and Exhibit. Reston: AIAA, 1999: 1-10.
[64] 孙艳军,梅元贵.国外动车组受电弓的气动噪声介绍[J].铁道机车车辆,2008,28(5):32-35.
SUN Yan-jun, MEI Yuan-gui. Introduction of aerodynamic noise generated by foreign EMUs pantograph[J]. Railway Locomotive and Car, 2008, 28(5): 32-35.(in Chinese)
[65] IKEDA M, MITAUMOJI T, SUEJKI T, et al. Aerodynamic noise reduction of a pantograph by shape-smoothing of panhead and its support and by the surface covering with porous material[J]. Noise and Vibration Mitigation for Rail Transportation Systems, 2010, 118: 419-426.
[66] WAKANAYASHI Y, KURITA T, YAMADA H, et al.
Noise measurement results of Shinkansen high-speed test train[C]∥Springer. 9th International Workshop on Railway Noise. Berlin: Springer, 2007: 1-6.
[67] 黄 莎,梁习锋,杨明智.高速列车车辆连接部位气动噪声数值模拟及降噪研究[J].空气动力学学报,2012,30(2):254-259.
HUANG Sha, LIANG Xi-feng, YANG Ming-zhi. Numerical simulation of aerodynamic noise and noise reduction of high-speed train connection section[J]. Acta Aerodynamica Sinica, 2012, 30(2): 254-259.(in Chinese)
[68] 刘国庆,杜 健,刘加利,等.车端风挡类型对高速列车气动噪声影响规律的研究[J].噪声与振动控制,2018,38(2):87-101.
LIU Guo-qing, DU Jian, LIU Jia-li, et al. Investigation on the influence of inter-car windshield types on the aerodynamic noise of high speed trains[J]. Noise and Vibration Control, 2018, 38(2): 87-101.(in Chinese)
[69] 赵月影,杨志刚,李启良.高速列车车厢连接处脉动压力分析与控制[J].声学技术,2019,38(5):568-573.
ZHAO Yue-ying, YANG Zhi-gang, LI Qi-liang. Analysis and control of the fluctuation pressure at inter-coach space of high-speed train[J]. Technical Acoustics, 2019, 38(5): 568-573.(in Chinese)
[70] 田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9.
TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9.(in Chinese)
[71] 杨国伟,魏宇杰,赵桂林,等.高速列车的关键力学问题[J].力学进展,2015,45:217-458.
YANG Guo-wei, WEI Yu-jie, ZHAO Gui-lin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45: 217-458.(in Chinese)
[72] SUN Zhen-xu, YAO Shuai-bao, WEI Lian-yi, et al. Numerical investigation on the influence of the streamlined structures of the high-speed train's nose on aerodynamic performances[J]. Applied Sciences, 2021, 11: 1-22.
[73] 安 翼,莫晃锐,刘青泉.高速列车头型长细比对气动噪声的影响[J].力学学报,2017,49(5):985-996.
AN Yi, MO Huang-rui, LIU Qing-quan. Study on the influence of the nose slenderness ratio of high-speed train on the aerodynamic noise[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 985-996.(in Chinese)
[74] THOMPSON D J. Railway Noise and Vibration: Mechanisms, Modelling and Means of Control[M]. Amsterdam: Elsevier, 2009.