|Table of Contents|

Shear strength and disintegration properties of polypropylene fiber-reinforced loess(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2021年02期
Page:
82-92
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Shear strength and disintegration properties of polypropylene fiber-reinforced loess
Author(s):
LU Hao1 YAN Chang-gen2 JIA Zhuo-long2 LAN Heng-xing3 SHI Yu-ling3YANG Xiao-hua2 ZHANG Zhi-quan4
(1. Guangdong Hualu Transport Technology Co., Ltd., Guangzhou 510420, Guangdong, China; 2. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 3. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China; 4. School of Civil Engineering, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
subgrade engineering reinforced loess polypropylene fiber shear strength disintegration rate
PACS:
U416.1
DOI:
10.19818/j.cnki.1671-1637.2021.02.007
Abstract:
To test the protective effect of polypropylene(PP)fiber-reinforced loess on slope surface, the influences of fiber content, fiber length and moisture content on the shear strength and disintegration properties of PP fiber-reinforced loess were evaluated. The optimal mixing ratio for the reinforced loess was obtained to conduct field slope surface protection tests. Research result shows that compared to unreinforced loess, the cohesion and internal friction angle of PP fiber-reinforced loess maximally increase by 113.8% and 23.3%, respectively, while the disintegration rate reduces by a maximum of 87.5%. Therefore, PP fiber can effectively improve the shear strength and disintegration resistance of loess. As the fiber's content and length increase, the cohesion of PP fiber-reinforced loess increases first and then decreases, and first increases sharply and then increases gradually, respectively. Meanwhile, the disintegration rate decreases first and then increases, and decreases continuously, respectively. For the shear strength, the optimal fiber content is 0.3%, and the optimum fiber length is 15 mm. For the disintegration properties, the optimal fiber content is 0.5%, and the optimum fiber length is 19 mm. In contrast, the relative difference in the disintegration rate between the two samples with different fiber contents and lengths is smaller than that in the shear strength. Hence, the optimal fiber content is 0.3%, while the optimum fiber length is 15 mm. Higher water content leads to lower cohesion, internal friction angle, and disintegration rate of PP fiber-reinforced loess, and the relationships between the water content and the three parameters conform to cubic polynomial or Logistic functions. Based on the field tests, the average erosion depth of the slope protected with PP fiber-reinforced loess is approximately 3 mm, indicating that the PP fiber-reinforced loess provides a significant slope surface protection. 3 tabs, 15 figs, 35 refs.

References:

[1] 唐朝生,施 斌,蔡 奕,等.聚丙烯纤维加固软土的试验研究[J].岩土力学,2007,28(9):1796-1800.
TANG Chao-sheng, SHI Bin, CAI Yi, et al. Experimental study on polypropylene fiber improving soft soils[J]. Rock and Soil Mechanics, 2007, 28(9): 1796-1800.(in Chinese)
[2] SOLANKI P, KHOURY N, ZAMAN M M. Engineering
properties and moisture susceptibility of silty clay stabilized with lime, class C fly ash, and cement kiln dust[J]. Journal of Materials in Civil Engineering, 2009, 21(12): 749-757.
[3] 裴向军,杨晴雯,许 强,等.改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J].岩石力学与工程学报,2016,35(11):2316-2327.
PEI Xiang-jun, YANG Qing-wen, XU Qiang, et al. Research on glue reinforcement mechanism and scouring resistant properties of soil slopes by modified carboxymethyl cellulose[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2316-2327.(in Chinese)
[4] AYELDEEN M, NEGM A, EL-SAWWAF M, et al.
Enhancing mechanical behaviors of collapsible soil using two biopolymers[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 329-339.
[5] 周翠英,赵珊珊,杨 旭,等.生态酯类材料砂土改良及工程护坡应用[J].岩土力学,2019,40(12):4828-4837.
ZHOU Cui-ying, ZHAO Shan-shan, YANG Xu, et al. Improvement of eco-ester materials on sandy soils and engineering slope protection[J]. Rock and Soil Mechanics, 2019, 40(12): 4828-4837.(in Chinese)
[6] VISWANADHAM B V S, PHANIKUMAR B R, MUK-HERJEE R V. Swelling behaviour of a geober-reinforced expansive soil[J]. Geotextiles and Geomembranes, 2009, 27(1): 73-76.
[7] MIRZABABAEI M, MIRAFTAB M, MOHAMED M,
et al. Unconned compression strength of reinforced clays with carpet waste fibers[J]. Journal of Geotechnical and Geoenvironmental, 2012, 139(3): 483-493.
[8] 刘宝生,唐朝生,李 建,等.纤维加筋土工程性质研究进展[J].工程地质学报,2013,21(4):540-547.
LIU Bao-sheng, TANG Chao-sheng, LI Jian, et al. Advances in engineering properties of fiber reinforced soil[J]. Journal of Engineering Geology, 2013, 21(4): 540-547.(in Chinese)
[9] WEI Shao, CETIN B, LI Ya-dong, et al. Experimental
investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber[J]. Geotechnical and Geological Engineering, 2014, 32(4): 901-910.
[10] KUMAR A, GUPTA D. Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash-soil mixtures[J]. Geotextiles and Geomembranes, 2016, 44(3): 466-474.
[11] 卢 浩,晏长根,杨晓华,等.麦秆纤维加筋土的抗冲蚀性及其防护效果试验研究[J].铁道科学与工程学报,2017,14(10):2138-2145.
LU Hao, YAN Chang-gen, YANG Xiao-hua, et al. Experimental research on anti-eroding property and protection effect of reinforced soil with straw fiber[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2138-2145.(in Chinese)
[12] YETIMOGLU T, INANIR M, INANIR O E. A study on bearing capacity of randomly distributed fiber-reinforced sand lls overlying soft clay[J]. Geotextiles and Geomembranes, 2005, 23(2): 174-183.
[13] DIAMBRA A, IBRAIM E, WOOD D M, et al. Fibre
reinforced sands: experiments and modelling[J]. Geotextiles and Geomembranes, 2010, 28(3): 238-250.
[14] MOHAMED A E M K. Improvement of swelling clay
properties using haybers[J]. Construction and Building Materials, 2013, 38: 242-247.
[15] CHAUHAN M S, MITTAL S, MOHANTY B. Performance evaluation of silty sand subgrade reinforced with fly ash and bre[J]. Geotextiles and Geomembranes, 2008, 26(5): 429-35.
[16] PRABAKAR J, SRIDHAR R S. Effect of random inclusion of sisal fibre on strength behaviour of soil[J]. Construction and Building Materials, 2002, 16(2): 123-131.
[17] 杨继位,柴寿喜,王晓燕,等.以抗压强度确定麦秸秆加筋盐渍土的加筋条件[J].岩土力学,2010,31(10):3260-3264.
YANG Ji-wei, CHAI Shou-xi, WANG Xiao-yan,et al.Suitable reinforcement conditions on the basis of compressive strength of reinforced saline soils with wheat straw[J]. Rock and Soil Mechanics, 2010, 31(10): 3260-3264.(in Chinese)
[18] 雷胜友,丁万涛.加筋纤维抑制膨胀土膨胀性的试验[J].岩土工程学报,2005,27(4):482-485.
LEI Sheng-you, DING Wan-tao. Experimental investigation on restraining the swell of expansive soil with fibre-reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 482-485.(in Chinese)
[19] 唐朝生,施 斌,高 玮,等.纤维加筋土中单根纤维的拉拔试验及临界加筋长度的确定[J].岩土力学,2009,30(8):2225-2230.
TANG Chao-sheng, SHI Bin, GAO Wei, et al. Single-fiber pull-out test and the determination of critical fiber reinforcement length for fiber reinforced soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2225-2230.(in Chinese)
[20] 唐朝生,施 斌,高 玮,等.含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J].岩石力学与工程学报,2007,26(增1):2968-2973.
TANG Chao-sheng, SHI Bin, GAO Wei, et al. Study on effects of sand content on strength of polypropylene fiber reinforced clay soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2968-2973.(in Chinese)
[21] 陈昌富,刘怀星,李亚平.草根加筋土的室内三轴实验研究[J].岩土力学,2007,28(10):2041-2045.
CHEN Chang-fu, LIU Huai-xing, LI Ya-ping. Study on grassroots-reinforced soil by laboratory triaxial test[J]. Rock and Soil Mechanics, 2007, 28(10): 2041-2045.(in Chinese)
[22] 蒋定生,李新华,范兴科,等.黄土高原土壤崩解速率变化规律及影响因素研究[J].水土保持通报,1995,15(3):20-27.
JIANG Ding-sheng, LI Xin-hua, FAN Xing-ke, et al. Research on the law of soil disintegration rate change and its effect factors on the loess plateau[J]. Bulletin of Soil and Water Conservation, 1995, 15(3): 20-27.(in Chinese)
[23] 李家春,崔世富,田伟平.公路边坡降雨侵蚀特征及土的崩解试验[J].长安大学学报(自然科学版),2007,27(1):23-26,49.
LI Jia-chun, CUI Shi-fu, TIAN Wei-ping. Erosion characteristic of road slope and test of soil disintegration[J]. Journal of Chang'an University(Natural Science Edition), 2007, 27(1): 23-26, 49.(in Chinese)
[24] FAULKNER H, ALEXANDER R, TEEUW R, et al.
Variations in soil dispersivity across a gully head displaying shallow sub-surface pipes, and the role of shallow pipes in rill initiation[J]. Earth Surface Processes and Landforms, 2004, 29(9): 1143-1160.
[25] BRIVOIS O, BONELLI S, BORGHI R. Soil erosion in the
boundary layer flow along a slope: a theoretical study[J]. European Journal of Mechanics—B/Fluids, 2007, 26(6): 707-719.
[26] BONELLI S, BRIVOIS O, BORGHI R, et al. On the modelling of piping erosion[J]. Comptes Rendus Mécanique, 2006, 334(8/9): 555-559.
[27] WILSON G V, PERIKETI R K, FOX G A, et al. Soil properties controlling seepage erosion contributions to streambank failure[J]. Earth Surface Processes and Landforms, 2007, 32(3): 447-459.
[28] 曾 光,杨勤科,姚志宏.黄土丘陵沟壑区不同土地利用类型土壤抗侵蚀性研究[J].水土保持通报,2008,28(1):6-9,38.
ZENG Guang, YANG Qin-ke, YAO Zhi-hong. Soil anti-erodibility under different landuse types in the loess hill and gully area[J]. Bulletin of Soil and Water Conservation, 2008, 28(1): 6-9, 38.(in Chinese)
[29] 程海涛,刘保健,谢永利.重塑黄土变形特性[J].长安大学学报(自然科学版),2008,28(5):31-34.
CHENG Hai-tao, LIU Bao-jian, XIE Yong-li. Deformation characteristics of remolded loess[J]. Journal of Chang'an University(Natural Science Edition), 2008, 28(5): 31-34.(in Chinese)
[30] 李喜安,黄润秋,彭建兵.黄土崩解性试验研究[J].岩石力学与工程学报,2009,28(增1):3207-3213.
LI Xi-an, HUANG Run-qiu, PENG Jian-bing. Experimental research on disintegration of loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3207-3213.(in Chinese)
[31] 蔡云廷.山西铁路沿线黄土崩解性试验研究[J].铁道工程学报,2016,33(4):31-35.
CAI Yun-ting. Research on the loess disintegration test along Shanxi Railway[J]. Journal of Railway Engineering Society, 2016, 33(4): 31-35.(in Chinese)
[32] 唐朝生,施 斌,顾 凯.纤维加筋土中筋/土界面相互作用的微观研究[J].工程地质学报,2011,19(4):610-614.
TANG Chao-sheng, SHI Bin, GU Kai. Microstructural study on interfacial interactions between fiber reinforcement and soil[J]. Journal of Engineering Geology, 2011, 19(4): 610-614.(in Chinese)
[33] TANG Chao-sheng, SHI Bin, ZHAO Li-zheng. Interfacial
shear strength of ber reinforced soil[J]. Geotextiles and Geomembranes, 2010, 28(1): 54-62.
[34] 王桂尧,周 欢,夏旖琪,等.草类根系对坡面土强度及崩解特性的影响试验[J].中国公路学报,2018,31(2):234-241.
WANG Gui-yao, ZHOU Huan, XIA Yi-qi, et al. Experiment on effect of grass root system on slope soil strength and disintegration characteristics[J]. China Journal of Highway and Transport, 2018, 31(2): 234-241.(in Chinese)
[35] 张 抒,唐辉明.非饱和花岗岩残积土崩解机制试验研究[J].岩土力学,2013,34(6):1668-1674.
ZHANG Shu, TANG Hui-ming. Experimental study of disintegration mechanism for unsaturated granite residual soil[J]. Rock and Soil Mechanics, 2013, 34(6): 1668-1674.(in Chinese)

Memo

Memo:
-
Last Update: 2021-06-01