[1] PENG Zhou-hua, WANG Jun, WANG Dan, et al. An
overview of recent advances in coordinated control of multiple autonomous surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 732-745.
[2] 陆 宇.面向多船协同的自适应编队控制方法研究[D].上海:上海交通大学,2022.
LU Yu. Adaptive formation control for the cooperation of autonomous surface vehicles[D]. Shanghai: Shanghai Jiao Tong University, 2022.(in Chinese)
[3] 柳晨光,初秀民,吴 青,等.USV发展现状及展望[J].中国造船,2014,55(4):194-205.
LIU Chen-guang, CHU Xiu-min, WU Qing, et al. A review and prospect of USV research[J]. Shipbuilding of China, 2014, 55(4): 194-205.(in Chinese)
[4] 侯瑞超,唐智诚,王 博,等.水面无人艇智能化技术的发展现状和趋势[J].中国造船,2020,61(增1):211-220.
HOU Rui-chao, TANG Zhi-cheng, WANG Bo, et al. Development status and trend of intelligent technology for unmanned surface vehicles [J]. Shipbuilding of China, 2020, 61(S1): 211-220.(in Chinese)
[5] 柳晨光,贺治卜,初秀民,等.船舶编队控制综述[J].交通运输工程学报,2022,22(4):10-27.
LIU Chen-guang, HE Zhi-bo, CHU Xiu-min, et al. Overview on ship formation control[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 10-27.(in Chinese)
[6] TUO Yu-long, WANG Sha-sha, PENG Zhou-hua, et al. Reliability-based fixed-time nonsingular terminal sliding mode control for dynamic positioning of turret-moored vessels with uncertainties and unknown disturbances[J]. Ocean Engineering, 2022, 248: 110748.
[7] LIANG Xiao, QU Xing-ru, WANG Ning, et al. A novel distributed and self-organized swarm control framework for underactuated unmanned marine vehicles[J]. IEEE Access, 2019, 7: 112703-112712.
[8] LU Yu, ZHANG Guo-qing, SUN Zhi-jian, et al. Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances[J]. Ocean Engineering, 2018, 167: 36-44.
[9] 马雨飞.基于确定学习方法的无人水面艇编队控制与学习研究[D].广州:华南理工大学,2020.
MA Yu-fei. Formation control and learning of multiple unmanned surface vehicles based on deterministic learning method[D]. Guangzhou: South China University of Technology, 2020.(in Chinese)
[10] FU Ming-yu, JIAO Jian-fang, YIN Shen. Robust coordinated
formation for multiple surface vessels based on backstepping sliding mode control[J]. Abstract and Applied Analysis, 2013, 2013: 681319.
[11] SUN Dong, WANG Can, SHANG Wen, et al. A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations[J]. IEEE Transactions on Robotics, 2009, 25(5): 1074-1086.
[12] LI Le-bao, SUN Ling-ling, ZHANG Sheng-zhou. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control[J]. ISA Transactions, 2016, 62: 222-235.
[13] 杨立炜,付丽霞,李 萍.多智能体系统编队控制发展综述[J].电子测量技术,2020,43(24):18-27.
YANG Li-wei, FU Li-xia, LI Ping. Summary of development of multi-agent system formation control[J]. Electronic Measurement Technology, 2020, 43(24): 18-27.(in Chinese)
[14] ZHANG Ying, LI Xu. Leader-follower formation control and obstacle avoidance of multi-robot based on artificial potential field[C]∥IEEE. The 27th Chinese Control and Decision Conference(2015 CCDC). New York: IEEE, 2015: 4355-4360.
[15] DING Guo-hua, ZHU Da-qi, SUN Bing. Formation control and obstacle avoidance of multi-AUV for 3-D underwater environment[C]∥IEEE. Proceedings of the 33rd Chinese Control Conference. New York: IEEE, 2014: 8347-8352. [16] ZHOU Ding-jiang, WANG Zi-jian, SCHWAGER M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures[J]. IEEE Transactions on Robotics, 2018, 34(4): 916-923.
[17] CHEN Xuan-lin, HUANG Fang-hao, ZHANG You-gong, et al. A novel virtual-structure formation control design for mobile robots with obstacle avoidance[J]. Applied Sciences, 2020, 10(17): 5807.
[18] LIN Jin-ling, HWANG K S, WANG Ya-ling. A simple scheme for formation control based on weighted behavior learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6): 1033-1044.
[19] 徐肖豪,李成功,赵嶷飞,等.基于人工势场算法的改航路径规划[J].交通运输工程学报,2009,9(6):64-68.
XU Xiao-hao, LI Cheng-gong, ZHAO Yi-fei, et al. Rerouting path planning based on artificial potential field algorithm[J]. Journal of Traffic and Transportation Engineering, 2009, 9(6):64-68.(in Chinese)
[20] KHATIB O. Real-time obstacle avoidance system for manipulators and mobile robots[C]∥IEEE. Proceedings of 1985 IEEE International Conference on Robotics and Automation. New York: IEEE, 2003: 500-505.
[21] 郭银景,刘 琦,鲍建康,等.基于人工势场法的AUV避障算法研究综述[J].计算机工程与应用,2020,56(4):16-23.
GUO Yin-jing, LIU Qi, BAO Jian-kang, et al. Overview of AUV obstacle avoidance algorithm based on artificial potential field method[J]. Journal of Computer Engineering and Applications, 2020, 56(4): 16-23.(in Chinese)
[22] 刘 琨,张永辉,任 佳.基于改进人工势场法的无人船路径规划算法[J].海南大学学报(自然科学版),2016,34(2):99-104.
LIU Kun, ZHANG Yong-hui, REN Jia. Path planning algorithm for unmanned surface vehicle based on an improved artificial potential field method[J]. Natural Science Journal of Hainan University, 2016, 34(2): 99-104.(in Chinese)
[23] LAZAROWSKA A. A new potential field inspired path planning algorithm for ships[C]∥IEEE. 2018 23rd International Conference on Methods and Models in Automation and Robotics(MMAR). New York: IEEE, 2018: 166-170.
[24] LYU Hong-guang, YIN Yong. Ship's trajectory planning for collision avoidance at sea based on modified artificial potential field[C]∥IEEE. 2017 2nd International Conference on Robotics and Automation Engineering(ICRAE). New York: IEEE, 2018: 351-357.
[25] 迟 岑.基于机器学习的无人艇自主避碰方法研究[D].哈尔滨:哈尔滨工程大学,2016.
CHI Cen. Research on autonomous collision avoidance method of USV based on machine learning method[D]. Harbin: Harbin Engineering University, 2016.(in Chinese)
[26] WANG Jia, WU Xiao-bei, XU Zhi-liang. Decentralized formation control and obstacles avoidance based on potential field method[C]∥IEEE. 2006 International Conference on Machine Learning and Cybernetics. New York: IEEE, 2009: 803-808.
[27] WANG Yi-fan, SUN Xing-yan. Formation control of multi-UAV with collision avoidance using artificial potential field[C]∥IEEE. 2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics(IHMSC). New York: IEEE, 2019: 296-300.
[28] 徐玉杰.多动力定位船避碰控制方法研究[D].哈尔滨:哈尔滨工程大学,2018.
XU Yu-jie. Research on collision avoidance control methods for multiple dynamic positioning ships[D]. Harbin:Harbin Engineering University, 2018.(in Chinese)
[29] 王永军,郑 丽.关于Young不等式和Schwarz不等式的证明[J].数学学习与研究,2020(26):145-147.
WANG Yong-jun, ZHENG Li. Proof of the Young inequality and the Schwarz inequality[J]. Mathematics Learning and Research, 2020(26): 145-147.(in Chinese)