[1] HASSABALLAH M, KENK M A, MUHAMMAD K, et al. Vehicle detection and tracking in adverse weather using a deep learning framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7): 4230-4242.
[2] 杨 彪,闫国成,刘占文,等.基于异构图学习的交通场景运动目标感知[J].交通运输工程学报,2022,22(3):238-250.
YANG Biao, YAN Guo-cheng, LIU Zhan-wen, et al. Perception of moving objects in traffic scenes based on heterogeneous graph learning[J]. Journal of Traffic and Transportation Engineering, 2022,22(3): 238-250.(in Chinese)
[3] FIAZ M, MAHMOOD A, JAVED S, et al. Handcrafted and deep trackers: recent visual object tracking approaches and trends[J]. ACM Computing Surveys, 2019, 52(2): 1-44.
[4] ALTAN A, HACIOGLU R. Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances[J]. Mechanical Systems and Signal Processing, 2020, 138: 106548.
[5] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]∥IEEE. Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2010: 2544-2550.
[6] DANELLJAN M, KHAN F S, FELSBERG M, et al.
Adaptive color attributes for real-time visual tracking[C]∥IEEE. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014: 1090-1097.
[7] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-
speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[8] DANELLJAN M, HAGER G, SHAHBAZ K F, et al. Learning spatially regularized correlation filters for visual tracking[C]∥IEEE. Proceedings of the IEEE International Conference on Computer Vision. New York: IEEE, 2015: 4310-4318.
[9] DANELLJAN M, HAGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(8): 1561-1575.
[10] DANELLJAN M, BHAT G, SHAHBAZ K F, et al. ECO: efficient convolution operators for tracking[C]∥IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6638-6646. [11] WANG Nai-yan, YEUNG D Y. Learning a deep compact
image representation for visual tracking[J]. Advances in Neural Information Processing Systems, 2013, 26: 1-9.
[12] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]∥ IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 4293-4302.
[13] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]∥Springer. Proceedings of 2016 European Conference on Computer Vision. Berlin: Springer, 2016: 850-865.
[14] LI Bo, YAN Jun-jie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]∥IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 8971-8980.
[15] LI Bo, WU Wei, WANG Qiang, et al. SiamRPN++: evolution of siamese visual tracking with very deep net-works[C]∥IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 4282-4291. [16] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]∥ IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
[17] XU Yin-da, WANG Ze-yu, LI Zuo-xin, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[C]∥AAAI. Proceedings of the 2020 AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12549-12556. [18] ZHANG Zhi-peng, PENG Hou-wen, FU Jian-long, et al. Ocean: object-aware anchor-free tracking[C]∥Springer. Proceedings of 2020 European Conference on Computer Vision. Berlin: Springer, 2020: 771-787. [19] SZEGEDY C, LIU Wei, JIA Yang-qing, et al. Going deeper with convolutions[C]∥IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
[20] 黄 鹤,李文龙,吴 琨,等.基于ALCE-SSA优化的三维无人机低空突防[J].南京大学学报(自然科学),2022,58(3):448-459.
HUANG He, LI Wen-long, WU Kun, et al. 3D UAV low altitude penetration optimization based on ALCE-SSA [J]. Journal of Nanjing University(Natural Science), 2022, 58(3): 448-459.(in Chinese)
[21] ONG K M, ONG P, SIA C K, et al. Effective moving object tracking using modified flower pollination algorithm for visible image sequences under complicated background[J]. Applied Soft Computing, 2019, 83: 105625.
[22] NENAVATH H, JATOTH R K. Hybrid SCA-TLBO: a novel optimization algorithm for global optimization and visual tracking[J]. Neural Computing and Applications, 2019, 31(9): 5497-5526. [23] ZHANG Huang-long, GAO Zeng, ZHANG Jie, et al. Hybridizing extended ant lion optimizer with sine cosine algorithm approach for abrupt motion tracking[J]. EURASIP Journal on Image and Video Processing, 2020, 2020(1): 1-18.
[24] ONG P, CHONG T K, ONG K M, et al. Tracking of moving athlete from video sequences using flower pollination algorithm[J]. The Visual Computer, 2022, 38(3): 939-962.
[25] 黄 鹤,李文龙,吴 琨,等.动态自适应特征融合的MFOPA跟踪器[J].电子学报,2023,51(5):1350-1358.
HUANG He, LI Wen-long, WU Kun, et al. MFOPA tracker with dynamic adaptive feature fusion[J]. Acta Electronica Sinica, 2023, 51(5): 1350-1358.(in Chinese)
[26] ONG K M, ONG P, SIA C K. A carnivorous plant algorithm for solving global optimization problems[J]. Applied Soft Computing, 2021, 98: 106833.
[27] GACAV C, BENLIGIRAY B, ÖZKAN K, et al. Facial expression recognition with FHOG features[C]∥IEEE. 2018 26th Signal Processing and Communications Applications Conference(SIU). New York: IEEE, 2018: 1-4.
[28] PERAZA-VAZQUEZ H, PENA-DELGADO A F, ECHAVARRIA-CASTILLO G, et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies[J]. Mathematical Problems in Engineering, 2021, 2021: 1-19.
[29] ABUALIGAH L, YOUSRI D, ABD E M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers and Industrial Engineering, 2021, 157: 107250.
[30] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]∥Springer. Proceedings of 2016 European Conference on Computer Vision. Berlin: Springer, 2016: 445-461.
[31] FAN H, LIN L, YANG F, et al. LaSOT: a high-quality
benchmark for large-scale single object tracking[C]∥IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 5374-5383.