[1] 马卫华,罗世辉,张 敏,等.中低速磁浮车辆研究综述[J].交通运输工程学报,2021,21(1):199-216.
MA Wei-hua, LUO Shi-hui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216.(in Chinese)
[2] 邓自刚,刘宗鑫,李海涛,等.磁悬浮列车发展现状与展望[J].西南交通大学学报,2022,57(3):455-474,530.
DENG Zi-gang, LIU Zong-xin, LI Hai-tao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-574, 530.(in Chinese)
[3] 徐 飞,罗世辉,邓自刚.磁悬浮轨道交通关键技术及全速度域应用研究[J].铁道学报,2019,41(3):40-49.
XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49.(in Chinese)
[4] 梁 潇,陈 峰,傅庆湘.160 km·h-1中速磁浮交通系统的关键技术问题[J].城市轨道交通研究,2019,22(9):21-26.
LIANG Xiao, CHEN Feng, FU Qing-xiang. Key technical issues on 160 km·h-1 medium-speed maglev transit system[J]. Urban Mass Transit, 2019, 22(9): 21-26.(in Chinese)
[5] NASIRI Z R, HEKMATI A. A review of suspension and traction technologies in maglev trains[C]∥IEEE. 34th International Power System Conference(PSC). New York: IEEE, 2019: 129-135.
[6] PHAENKONGNGAM T, CHINNAWONG K, PATUMASUIT N, et al. Reviewing propulsion and levitation system for magnetic levitation train[C]∥IEEE. 2021 International Electrical Engineering Congress. New York: IEEE, 2021: 185-188.
[7] 王 平,梅 子,龙志强.基于超球体高斯分布的悬浮系统异常检测[J].机车电传动,2021(6):9-17.
WANG Ping, MEI Zi, LONG Zhi-qiang. Anomaly detection for suspension systems based on the Gaussian distribution of hyperspheres[J]. Electric Drive for Locomotives, 2021(6): 9-17.(in Chinese)
[8] 王 平,梅 子,龙志强.基于改进典型相关分析的中低速悬浮系统异常检测方法[J].同济大学学报(自然科学版),2022,50(2):241-252.
WANG Ping, MEI Zi, LONG Zhi-qiang. Anomaly detection method of middle-low speed suspension system based on improved canonical correlation analysis[J]. Journal of Tongji University(Natural Science), 2022, 50(2): 241-252.(in Chinese)
[9] 罗建辉,王 平.基于海林格距离和相关系数的中低速悬浮系统异常检测方法[J].铁道科学与工程学报,2022,19(10):3096-3106.
LUO Jian-hui, WANG Ping. Anomaly detection method of middle-low speed suspension system based on Hellinger distance and correlation coefficient[J]. Journal of Railway Science and Engineering, 2022, 19(10): 3096-3106.(in Chinese)
[10] ZHANG Yun-zhou, CHAO Chuang, WU Jun, et al. Magnetic anomaly of long track detection method based on wavelet combining with fractal for high speed maglev transit[J]. Measurement and Control, 2022, 55(7/8): 717-728.
[11] 周 旭,温 韬,龙志强.基于漏检率的磁浮列车悬浮系统异常检测[J].西南交通大学学报,2023,58(4):903-912.
ZHOU Xu, WEN Tao, LONG Zhi-qiang. Anomaly detection of suspension system in maglev train based on missed detection rate[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 903-912.(in Chinese)
[12] 龙子凡,司 恩,罗华军,等.一种磁浮列车异常振动监测与诊断方法[J].科学技术创新,2022(10):21-24.
LONG Zi-fan, SI En, LUO Hua-jun, et al. A method for monitoring and diagnosing abnormal vibration of maglev train[J]. Scientific and Technological Innovation, 2022(10): 21-24.(in Chinese)
[13] 吴 峻,李洪鲁,张雨馨,等.中低速磁浮轨道疑似不平顺的Box-Whisker图筛选法[J].交通运输工程学报,2023,23(3):68-76.
WU Jun, LI Hong-lu, ZHANG Yu-xin, et al. Screening method of suspected irregularity for medium-and-low-speed maglev tracks based on Box-Whisker plot[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 68-76.(in Chinese)
[14] CHEN Po-yu, YANG Shu-sen, MCCANN J A. Distributed real-time anomaly detection in networked industrial sensing systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3832-3842.
[15] AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147.
[16] XIE Kun, LI Xiao-can, WANG Xin, et al. On-line anomaly detection with high accuracy[J]. IEEE/ACM Transactions on Networking, 2018, 26(3): 1222-1235.
[17] LUO Jian, HONG Tao, YUE Meng. Real-time anomaly detection for very short-term load forecasting[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 235-243.
[18] FISCH A T M, BARDWELL L, ECKLEY I A. Real time anomaly detection and categorisation[J]. Statistics and Computing, 2022, 32(4): 55.
[19] ZHOU Yan-jun, REN Huo-rong, LI Zhi-wu, et al. Anomaly detection based on a granular Markov model[J]. Expert Systems with Applications, 2022, 187: 115744.
[20] LIU Sheng-hua, ZHOU Bin, DING Quan, et al. Time series anomaly detection with adversarial reconstruction networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 4293-4306.
[21] 王德文,杨力平.智能电网大数据流式处理方法与状态监测异常检测[J].电力系统自动化,2016,40(14):122-128.
WANG De-wen, YANG Li-ping. Stream processing method and condition monitoring anomaly detection for big data in smart grid[J]. Automation of Electric Power Systems, 2016, 40(14): 122-128.(in Chinese)
[22] 陈兴蜀,江天宇,曾雪梅,等.基于多维时间序列分析的网络异常检测[J].工程科学与技术,2017,49(1):144-150.
CHEN Xing-shu, JIANG Tian-yu, ZENG Xue-mei, et al. Network anomaly detector based on multiple time series analysis[J]. Advanced Engineering Sciences, 2017, 49(1): 144-150.(in Chinese)
[23] 李新鹏,高 欣,阎 博,等.基于孤立森林算法的电力调度流数据异常检测方法[J].电网技术,2019,43(4):1447-1456.
LI Xin-peng, GAO Xin, YAN Bo, et al. An approach of data anomaly detection in power dispatching streaming data based on isolation forest algorithm[J]. Power System Technology, 2019, 43(4): 1447-1456.(in Chinese)
[24] 时 磊.基于LSTMs-Autoencoder的流数据异常检测算法[J].仪表技术与传感器,2021(10):120-125.
SHI Lei. Anomaly detection algorithm in streaming data based on LSTMs-Autoencoder[J]. Instrument Technique and Sensor, 2021(10): 120-125.(in Chinese)
[25] 毛文涛,田思雨,窦 智,等.一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J].自动化学报,2022,48(1):302-314.
MAO Wen-tao, TIAN Si-yu, DOU Zhi, et al. A new deep transfer learning-based online detection method of rolling bearing early fault[J]. Acta Automatica Sinica, 2022, 48(1): 302-314.(in Chinese)
[26] 陈仲磊,伊 鹏,陈 祥,等.基于集成学习的系统调用实时异常检测框架[J].计算机工程,2023,49(6):162-169,179.
CHEN Zhong-lei, YI Peng, CHEN Xiang, et al. Real-time anomaly detection framework via system calls based on integrated learning[J]. Computer Engineering, 2023, 49(6): 162-169, 179.(in Chinese)
[27] GUE I H V, UBANDO A T, TSENG M, et al. Artificial neural networks for sustainable development: a critical review[J]. Clean Technologies and Environmental Policy, 2020, 22: 1449-1465.
[28] SHARMA S, SHARMA S, ATHAIYA A. Activation functions in neural networks[J]. International Journal of Engineering Applied Sciences and Technology, 2020, 4(12): 310-316.
[29] SALEHINEJAD H, SANKAR S, BARFETT J, et al. Recent advances in recurrent neural networks[J]. arXiv, 2017, DOI: 10.48550/arXiv.1801.01078.
[30] YU Yong, SI Xiao-sheng, HU Chang-hua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270.
[31] LIU Dian-yu, SUN Chuan-le, GAO Jun. Machine learning of log-likelihood functions in global analysis of parton distributions[J]. arXiv, 2022, DOI: 10.48550/arXiv.2201.06586.
[32] DING Mei-mei, TIAN Hui. PCA-based network traffic anomaly detection[J]. Tsinghua Science and Technology, 2016, 21(5): 500-509.
[33] 杨 敏,张焕国,傅建明,等.基于支持向量数据描述的异常检测方法[J].计算机工程,2005,31(3):39-42.
YANG Min, ZHANG Huan-guo, FU Jian-ming, et al. Anomaly intrusion detection method based on SVDD[J]. Computer Engineering, 2005, 31(3): 39-42.(in Chinese)