[1] 李再帏,雷晓燕,高 亮.轨道短波不平顺数值模拟新方法[J].交通运输工程学报,2016,16(1):37-45.
LI Zai-wei, LEI Xiao-yan, GAO Liang. New numerical simulation method of shortwave track irregularity[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 37-45.(in Chinese)
[2] 肖 乾,王丹红,陈道云,等.高速列车轮轨激励作用机理及其影响综述[J].交通运输工程学报,2021,21(3):93-109.
XIAO Qian, WANG Dan-hong, CHEN Dao-yun, et al. Review on mechanism and influence of wheel-rail excitation of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 93-109.(in Chinese)
[3] GONZALO A P, HORRIDGE R, STEELE H, et al. Review of data analytics for condition monitoring of railway track geometry[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 22737-22754.
[4] LASISI A, ATTOH-OKINE N. An unsupervised learning framework for track quality index and safety[J]. Transportation Infrastructure Geotechnology, 2020, 7(1): 1-12.
[5] ANDRADE A R, TEIXEIRA P F. Uncertainty in rail-track geometry degradation: Lisbon-Oporto Line case study[J]. Journal of Transportation Engineering, 2011, 137(3): 193-200.
[6] CAETANO L F, TEIXEIRA P F. Availability approach to optimizing railway track renewal operations[J]. Journal of Transportation Engineering, 2013, 139(9): 941-948.
[7] KHOUZANI A H E, GOLROO A, BAGHERI M. Railway maintenance management using a stochastic geometrical degradation model[J]. Journal of Transportation Engineering, Part A: Systems, 2017, 143(1): 4016002.
[8] FAMUREWA S M, JUNTTI U, NISSEN A, et al. Augmented utilisation of possession time: analysis for track geometry maintenance[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(4): 1118-1130.
[9] LIU Reng-kui, XU Peng, WANG Fu-tian. Research on a short-range prediction model for track irregularity over small track lengths[J]. Journal of Transportation Engineering, 2010, 136(12): 1085-1091.
[10] XU P, SUN Q, LIU R, et al. A short-range prediction model for track quality index[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(3): 277-285.
[11] 常艳艳,刘仍奎,王福田,等.兰新线铁路轨道几何状态劣化短期预测模型研究[J].铁道学报,2020,42(11):124-129.
CHANG Yan-yan, LIU Reng-kui, WANG Fu-tian, et al.Short-term prediction model for track geometry degradation on Lanzhou-Xinjiang Railway[J]. Journal of the China Railway Society, 2020, 42(11): 124-129.(in Chinese)
[12] LASISI A, ATTOH-OKINE N. Principal components analysis and track quality index: a machine learning approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 91: 230-248.
[13] SRESAKOOLCHAI J, KAEWUNRUEN S. Railway defect detection based on track geometry using supervised and unsupervised machine learning[J]. Structural Health Monitoring, 2022, 21(4): 1757-1767.
[14] KHAJEHEI H, AHMADI A, SOLEIMANMEIGOUNI I, et al. Prediction of track geometry degradation using artificial neural network: a case study[J]. International Journal of Rail Transportation, 2022, 10(1): 24-43.
[15] GULER H. Prediction of railway track geometry deterioration using artificial neural networks: a case study for Turkish state railways[J]. Structure and Infrastructure Engineering, 2014, 10(5): 614-626.
[16] LEE J S, HWANG S H, CHOI I Y, et al. Prediction of track deterioration using maintenance data and machine learning schemes[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 144(9): 04018045.
[17] 彭丽宇,张进川,苟娟琼,等.基于BP神经网络的铁路轨道几何不平顺预测方法[J].铁道学报,2018,40(9):154-158.
PENG Li-yu, ZHANG Jin-chuan, GOU Juan-qiong, et al. Prediction method of railway track geometric irregularity based on BP neural network[J]. Journal of the China Railway Society, 2018, 40(9): 154-158.(in Chinese)
[18] 于 瑶,刘仍奎,王福田.基于支持向量机的轨道不平顺预测研究[J].铁道科学与工程学报,2018,15(7):1671-1677.
YU Yao, LIU Reng-kui, WANG Fu-tian.Prediction for track irregularity based on support vector machine[J]. Journal of Railway Science and Engineering, 2018, 15(7): 1671-1677.(in Chinese)
[19] 韩 晋,杨 岳,陈 峰,等.基于非等时距加权灰色模型与神经网络的轨道不平顺预测[J].铁道学报,2014,36(1):81-87.
HAN Jin, YANG Yue, CHEN Feng, et al.Prediction of track irregularity based on non-equal interval weighted grey model and neural network[J]. Journal of the China Railway Society, 2014, 36(1): 81-87.(in Chinese)
[20] 马子骥,郭帅锋,李元良.基于改进非等间距灰色模型和PSVM的轨道质量指数预测[J].铁道学报,2018,40(6):154-160.
MA Zi-ji, GUO Shuai-feng, LI Yuan-liang.Forecasting of track irregularity based on improved non-equal interval grey model and PSVM[J]. Journal of the China Railway Society, 2018, 40(6): 154-160.(in Chinese)
[21] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
[22] 明祖涛,刘 军,夏 力,等.改进的灰色模型在高铁沉降预测中的应用[J].测绘科学,2015,40(4):137-140.
MING Zu-tao, LIU Jun, XIA Li, et al.Study of the implementation of improved grey model in high-speed railway settlement prediction[J]. Science of Surveying and Mapping, 2015, 40(4): 137-140.(in Chinese)
[23] NABAEI A, HAMIAN M, PARSAEI M R, et al. Topologies and performance of intelligent algorithms: a comprehensive review[J]. Artificial Intelligence Review, 2018, 49(1): 79-103.
[24] 杨 维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.
YANG Wei, LI Qi-qiang. Survey on particle swarm optimization algorithm[J]. Engineering Science, 2004, 6(5): 87-94.(in Chinese)
[25] 王春雷,赵 琦,秦孝丽,等.基于改进相关向量机的锂电池寿命预测方法[J].北京航空航天大学学报,2018,44(9):1998-2003.
WANG Chun-lei, ZHAO Qi, QIN Xiao-li, et al. Life prediction method of lithium battery based on improved relevance vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1998-2003.(in Chinese)
[26] 雷亚国,陈 吴,李乃鹏,等.自适应多核组合相关向量机预测方法及其在机械设备剩余寿命预测中的应用[J].机械工程学报,2016,52(1):87-93.
LEI Ya-guo, CHEN Wu, LI Nai-peng, et al.A relevance vector machine prediction method based on adaptive multi-kernel combination and its application to remaining useful life prediction of machinery[J]. Journal of Mechanical Engineering, 2016, 52(1): 87-93.(in Chinese)
[27] FALAMARZI A, MORIDPOUR S, NAZEM M, et al. Prediction of tram track gauge deviation using artificial neural network and support vector regression[J]. Australian Journal of Civil Engineering, 2019, 17(1): 63-71.
[28] 李麟玮,吴益平,苗发盛,等.基于不同Bootstrap方法和KELM-BPNN模型的滑坡位移区间预测[J].岩石力学与工程学报,2019,38(5):912-926.
LI Lin-wei, WU Yi-ping, MIAO Fa-sheng, et al. Landslide displacement interval prediction based on different Bootstrap methods and KELM-BPNN model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 912-926.(in Chinese)
[29] 惠 阳,王永岗,彭 辉,等.基于优化PSO-BP算法的耦合时空特征下地铁客流预测[J].交通运输工程学报,2021,21(4):210-222.
HUI Yang, WANG Yong-gang, PENG Hui, et al.Subway passenger flow prediction based on optimized PSO-BP algorithm with coupled spatial-temporal characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 210-222.(in Chinese)
[30] 刘 刚,孙佳琦,董伟星.改进粒子群优化算法在建筑能耗优化中的参数设置[J].天津大学学报(自然科学与工程技术版),2021,54(1):82-90.
LIU Gang, SUN Jia-qi, DONG Wei-xing.Parameter settings of improved particle swarm optimization algorithm in building energy consumption optimization[J]. Journal of Tianjin University(Science and Technology), 2021, 54(1): 82-90.(in Chinese)