[1] 周雄飞,胡明华.空域容量评估研究综述[J].中国民航飞行学院学报,2016,27(6):37-40.
ZHOU Xiong-fei, HU Ming-hua. An overview on airspace capacity evaluation[J]. Journal of Civil Aviation Flight University of China, 2016, 27(6): 37-40.(in Chinese)
[2] BOWEN E, PEARCEY T. Delays in the flow of air traffic[J]. The Aeronautical Journal, 1948, 52(448): 251-258.
[3] FAA. FACT1: capacity needs in the national airspace system[R]. Washington DC: FAA, 2004.
[4] FAA. FACT2: capacity needs in the national airspace system[R]. Washington DC: FAA, 2007.
[5] FAA. FACT3: airport capacity needs in the national
airspace system[R]. Washington DC: FAA, 2015.
[6] BULUSU V, SENGUPTA R, POLISHCHUK V, et al. Cooperative and non-cooperative UAS traffic volumes[C]∥IEEE. 2017 International Conference on Unmanned Aircraft Systems(ICUAS). New York: IEEE, 2017: 1673-1681.
[7] BULUSU V, POLISHCHUK V. A threshold based airspace capacity estimation method for UAS traffic management[C]∥IEEE. 2017 Annual IEEE International Systems Conference. New York: IEEE, 2017: 1-7.
[8] SALLEH M F B, CHI Wan-chao, WANG Zhen-kun, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]∥AIAA. 2018 AIAA Information Systems Infotech@Aerospace. Reston: AIAA, 2018: 1-12.
[9] 全 权,李 刚,柏艺琴,等.低空无人机交通管理概览与建议[J].航空学报,2020,41(1):323238.
QUAN Quan, LI Gang, BAI Yi-qin, et al. Low altitude UAV traffic management: an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 323238.(in Chinese)
[10] PEARCEY T. Delays in landing of air traffic[J]. Aeronautical Journal, 1950, 52(456): 799-812.
[11] BLUMSTEIN A. The landing capacity of a runway[J]. Operations Research, 1959, 7(6): 752-763.
[12] HOOTON E N, GALLIHER H P, WARSKOW M A, et al. Operational evaluation of airport runway design and capacity: a study of methods and techniques[R]. New York: DTIC, 1963.
[13] RATNER R S, SIDDIQUEE W, GLASER M B, et al. A
methodology for evaluating the capacity of air traffic control systems[R]. Menlo Park: Stanford Research Institute, 1970.
[14] JANIC M, TOSIC V. Terminal airspace capacity model[J]. Transportation Research Part A: General, 1982, 16(4): 253-260.
[15] JANIC M, TOSIC V. En route sector capacity model[J]. Transportation Science, 1991, 25(4): 299-307.
[16] FAA. Airport capacity and delay[R]. Washington DC:
FAA, 1983.
[17] TOFUKUJI N. An enroute ATC simulation experiment for
sector capacity estimation[J]. IEEE Transactions on Control Systems Technology, 1993, 1(3): 138-143.
[18] GILBO E P. Airport capacity: representation, estimation,
optimization[J]. IEEE Transactions on Control Systems Technology, 1993, 1(3): 144-154.
[19] WANG Chao, ZHANG Xin-yue, XU Xiao-hao. Simulation
study on airfield system capacity analysis using SIMMOD[C]∥IEEE. 2008 International Symposium on Computational Intelligence and Design. New York: IEEE, 2008: 87-90.
[20] MAJUMDAR A, OCHIENG W, POLAK J. Estimation of
European airspace capacity from a model of controller workload[J]. Journal of Navigation, 2002, 55(3): 381-403.
[21] 温媛媛,戴福青.基于TAAM机场终端区容量评估方法研究[J].中国民航飞行学院学报,2013,24(6):9-14.
WEN Yuan-yuan, DAI Fu-qing. Terminal area capacity assessment based on TAAM[J]. Journal of Civil Aviation Flight University of China, 2013, 24(6): 9-14.(in Chinese)
[22] SUNIL E, HOEKSTRA J M, ELLERBROEK J, et al.
Metropolis:relating airspace structure and capacity for extreme traffic densities[C]∥FAA. Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar(ATM2015). Washington DC: FAA, 2015: 23-26.
[23] SWEDISH W J. Upgraded FAA airfield capacity model,
Volume 1: supplemental users guide[R]. Washington DC: FAA, 1981.
[24] SWEDISH W J. Upgraded FAA airfield capacity model,
Volume 2: technical description of revisions[R]. Washington DC: FAA, 1981.
[25] LEE D A, KOSTIUK P F, HEMM R V, et al. Estimating the effects of the terminal area productivity programs[R]. Washington DC: NASA, 1997.
[26] LEE D A, NELSON C, SHAPIRO G. The aviation system analysis capability airport capacity and delay models[R]. Washington DC: NASA, 1998.
[27] STAMATOPOULOS M A, ZOGRAFOS K G, ODONI A R. A decision support system for airport strategic planning[J]. Transportation Research Part C: Emerging Technologies, 2004, 12(2): 91-117.
[28] 田 勇.空中交通流量管理关键技术研究[D].南京:南京航空航天大学,2011.
TIAN Yong. Research on key techniques of air traffic flow management[D]. Nanjing: Nanjing University of Aeronautics and Astronautic, 2011.(in Chinese)
[29] 冯晓磊,唐鹤丹,李明捷.错列平行双跑道容量评估模型研究[J].数学的实践与认识,2017,47(11):66-73.
FENG Xiao-lei, TANG He-dan, LI Ming-jie. Research on the capacity evaluation model of staggered parallel double runways[J]. Mathematics in Practice and Theory, 2017, 47(11): 66-73.(in Chinese)
[30] LI Xiong, LI Feng, CHEN Xiao-qing. Study on the configuration and capacity of the lateral runway based on the airport green operation[C]∥IOP Publishing. 2017 International Conference on Environmental and Energy Engineering. Ostrava: IOP Publishing, 2017: 012032-1-8.
[31] 沈志远,胡莹莹.考虑尾流影响的侧向双跑道机场的跑道容量研究[J].南京航空航天大学学报,2020,52(1):161-170. SHEN Zhi-yuan, HU Ying-ying. Runway capacity of lateral double-runway airport considering wake effect[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(1): 161-170.(in Chinese)
[32] 刘珂璇,马 兰.隔离运行模式下开口V形跑道容量评估模型[J].中国科技论文,2018,13(7):825-830.
LIU Ke-xuan, MA Lan. Capacity assessment of two open V-shaped runways based on isolated operation mode[J]. China Sciencepaper, 2018, 13(7): 825-830.(in Chinese)
[33] 冯奎奎,翟文鹏,王玮卿.基于排队模型的乌鲁木齐机场容量评估[J].数学的实践与认识,2019,49(21):1-8.
FENG Kui-kui, ZHAI Wen-peng, WANG Wei-qing. Capacity evaluation of Urumqi Airport based on queuing model[J]. Mathematics in Practice and Theory, 2019, 49(21): 1-8.(in Chinese)
[34] CHEUNG W L, PIPLANI R, ALAM S, et al. Dynamic
capacity and variable runway configurations in airport slot allocation[J]. Computers and Industrial Engineering, 2021, 159: 107480.
[35] MIRKOVIC B, TOSIC V. Airport apron capacity: estimation, representation, and flexibility[J]. Journal of Advanced Transportation, 2014, 48(2): 97-118.
[36] MIRKOVIC B. Airport apron capacity estimation-model
enhancement[J]. Procedia-Social and Behavioral Sciences, 2011, 20: 1108-1117.
[37] CAI Kai-quan, LI Wei, JU Fei, et al. A scenario-based
optimization approach to robust estimation of airport apron capacity[C]∥IEEE. 2018 Integrated Communications, Navigation, Surveillance Conference(ICNS). New York: IEEE, 2018: 3A1-1-3A1-8.
[38] LIAO Chen-xi, WEI Zheng. Study on sector capacity and
workload model of air traffic controllers based on least square method[C]∥IEEE. 2020 IEEE International Conference on Power, Intelligent Computing and Systems(ICPICS). New York: IEEE, 2020: 1058-1062.
[39] WELCH J D, ANDREWS J W, MARTIN B D, et al.
Macroscopic workload model for estimating en route sector capacity[C]∥FAA. Proceedings of 7th USA/Europe ATM Research and Development Seminar. Washington DC: FAA, 2007: 1-17.
[40] TIAN Yong, WAN Li-li, YANG Shuang-shuang. Research
on the method of sector dynamic capacity evaluation[J]. System Engineering—Theory and Practice, 2014, 34(8): 2163-2169.
[41] 罗凤娥,齐 放,赵 琪,等.基于改进的DORATASK飞行签派员工作负荷评估[J].科技和产业,2021,21(4):240-243.
LUO Feng-e, QI Fang, ZHAO Qi, et al. Flight dispatcher workload assessment based on improved DORATASK[J]. Science Technology and Industry, 2021, 21(4): 240-243.(in Chinese)
[42] 董襄宁.扇区容量评估及复杂性分析[D].南京:南京航空航天大学,2017.
DONG Xiang-ning. Sector capacity evaluation and complexity analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.(in Chinese)
[43] KAGEYAMA K. ATC procedures modeling for capacity
estimation of Japanese airspace[C]∥AIAA. 2017 AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2017: 1-10.
[44] ZHANG Ming, SHAN Le, LIU Kai, et al. Terminal airspace
sector capacity estimation method based on the ATC dynamical model[J]. Kybernetes, 2016, 45(6): 884-899.
[45] MAJEED M, SU Rong. Neural partial differentiation-based estimation of terminal airspace sector capacity[J]. SAE International Journal of Aerospace, 2021, 14(2): 203-217.
[46] 任广建,朱金福,卢朝阳.基于ES模型的扇区容量评估研究[J].航空计算技术,2018,48(6):40-44.
REN Guang-jian, ZHU Jin-fu, LU Chao-yang. Research on assessment method of sector capacity based on ES model[J]. Aeronautical Computing Technique, 2018, 48(6): 40-44.(in Chinese)
[47] 张文倩,王 瑛,严 伟,等.恶劣天气下的多扇区动态容量评估方法[J].火力与指挥控制,2019,44(3):126-130,140.
ZHANG Wen-qian, WANG Ying, YAN Wei, et al. Research on multi-sector dynamic capacity evaluation method in severe weather[J]. Fire Control and Command Control, 2019, 44(3): 126-130, 140.(in Chinese)
[48] LIU Lu. Terminal airspace capacity evaluation model under
weather condition from perspective of a controller[J]. International Journal of Aerospace Engineering, 2018(2): 1-11.
[49] 黄海清,甘旭升,丁黎颖,等.军事活动影响下的终端区容量评估方法研究[J].航空工程进展,2020,11(3):344-352.
HUANG Hai-qing, GAN Xu-sheng, DING Li-ying, et al. Study on capacity assessment method of terminal area under the influence of military activities[J]. Advances in Aeronautical, Science and Engineering, 2020,11(3): 344-352.(in Chinese)
[50] 刘 璐.气象影响下终端区空域短期容量预测研究[D].南京:南京航空航天大学,2018.
LIU Lu. Research on short-term terminal capacity assessment under weather conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.(in Chinese)
[51] 王笑天,白乃贵.基于AirTop的武汉天河国际机场空域容量仿真评估[J].飞机设计,2018,38(1):72-75.
WANG Xiao-tian, BAI Nai-gui. Airspace capacity simulation evaluation of Wuhan Tianhe International Airport based on AirTop[J]. Aircraft Design, 2018, 38(1): 72-75.(in Chinese)
[52] 高 伟,康道驰.基于增维细胞传输模型的区域管制空域容量评估[J].科学技术与工程,2020,20(29):12211-12217.
GAO Wei, KANG Dao-chi. Regional controlled airspace capacity assessment based on an augmented cell transport model[J]. Science Technology and Engineering, 2020, 20(29): 12211-12217.(in Chinese)
[53] 孙海勇,刘裕旭.不同运行模式下的远距平行跑道容量研究[J].航空计算技术,2019,49(5):59-62,66. SUN Hai-yong, LIU Yu-xu. Research on long parallel runway capacity in different operation modes[J]. Aeronautical Computing Technique, 2019, 49(5): 59-62, 66.(in Chinese)
[54] 王 强,左杰俊,钟 琦,等.基于AnyLogic仿真的中小机场容量评估分析[J].航空计算技术,2020,50(3):21-24.
WANG Qiang, ZUO Jie-jun, ZHONG Qi, et al. Capacity evaluation analysis of small and medium airports based on AnyLogic simulation[J]. Aeronautical Computing Technique, 2020, 50(3): 21-24.(in Chinese)
[55] PARAMBATH S K. Capacity of ATC sectors in Chennai
Upper Area Control Centre[C]∥IEEE. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies(CONECCT). New York: IEEE, 2020: 1-7.
[56] RAMAMOORTHY K, HUNTER G. Simulation-based airport capacity estimation[C]∥NASA. 2013 Aviation Technology, Integration, and Operations Conference. Washington DC: NASA, 2013: 14-28.
[57] BARRER J, KUZMINSKI P, SWEDISH W. Analyzing the runway capacity of complex airports[C]∥AIAA. 5th ATIO and 16th Lighter-Than-Air Systems Technology. and Balloon Systems Conferences. Reston: AIAA, 2005: 1-7.
[58] 胡青云.基于复杂空域的多机场终端区扇区优化研究[D].广汉:中国民用航空飞行学院,2020.
HU Qing-yun. Research on sector optimization of multi-airport terminal area based on complex airspace[D]. Guanghan: Civil Aviation Flight University of China, 2020.(in Chinese)
[59] 赵 征.空域容量评估与预测技术研究[D].南京:南京航空航天大学,2015.
ZHAO Zheng. Research on airspace capacity assessment and forecast[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.(in Chinese)
[60] 赵 征,胡明华.机场历史高峰服务能力评估方法研究[J].航空计算技术,2015,45(1):17-21.
ZHAO Zheng, HU Ming-hua. Research on peak service rate of airport[J]. Aeronautical Computing Technique, 2015, 45(1): 17-21.(in Chinese)
[61] LYU Zhi-han, SONG Hou-bing, BASANTA-VAL P, et al. Next-generation big data analytics: state of the art, challenges, and future research topics[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1891-1899.
[62] ZHANG Kai, LIU Yong-xin, WANG Jian, et al. Tree-based airspace capacity estimation[C]∥IEEE. 2020 Integrated Communications Navigation and Surveillance Conference(ICNS). New York: IEEE, 2020: 5C1-1-5C1-8.
[63] 莫 凡.基于机器学习的扇区容量评估方法研究[D].南京:南京航空航天大学,2020.
MO Fan. Research on sector capacity evaluation method based on machine learning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.(in Chinese)
[64] CHEN Jia-tong, CAI Kai-quan, LI Wei, et al. An airspace capacity estimation model based on spatio-temporal graph convolutional networks considering weather impact[C]∥IEEE. 2021 IEEE/AIAA 40th Digital Avionics Systems Conference(DASC). New York: IEEE, 2021: 1-7.
[65] 胡锦文,程 炜.江西通航产业高质量发展研究[J].合作经济与科技,2022,692(21):10-12.
HU Jin-wen, CHENG Wei. Study on the high quality development of Jiangxi general aviation industry[J]. Co-Operative Economy and Science, 2022, 692(21): 10-12.(in Chinese)
[66] 张洪海,邹依原,张启钱,等.未来城市空中交通管理研究综述[J].航空学报,2021,42(7):82-106.
ZHANG Hong-hai, ZOU Yi-yuan, ZHANG Qi-qian, et al. Future urban air mobility management: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 82-106.(in Chinese)
[67] 李诚龙,屈文秋,李彦冬,等.面向eVTOL航空器的城市空中运输交通管理综述[J].交通运输工程学报,2020,20(4):35-54.
LI Cheng-long, QU Wen-qiu, LI Yan-dong, et al. Overview of traffic management of urban air mobility(UAM)with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54.(in Chinese)
[68] 张洪海,李 姗,夷 珈,等.城市低空航路规划研究综述[J].南京航空航天大学学报,2021,53(6):827-838.
ZHANG Hong-hai, LI Shan, YI Jia, et al. Review on urban low-altitude air route planning[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 53(6): 827-838.(in Chinese)
[69] MUELLER E R. Enabling airspace integration for high density urban air mobility[R]. Washington DC: NASA, 2017.
[70] 陈义友,张建平,邹 翔,等.民用无人机交通管理体系架构及关键技术[J].科学技术与工程,2021,21(31):13221-13237.
CHEN Yi-you, ZHANG Jian-ping, ZOU Xiang, et al. System framework and key technologies of civil unmanned aircraft system traffic management[J]. Science Technology and Engineering, 2021, 21(31): 13221-13237.(in Chinese)
[71] JIANG Tao, GELLER J, NI Dai-heng, et al. Unmanned aircraft system traffic management: concept of operation and system architecture[J]. International Journal of Transportation Science and Technology, 2016, 5(3): 123-135.
[72] HOEKSTRA J M, ELLERBROEK J, SUNIL E, et al. Geovectoring: reducing traffic complexity to increase the capacity of UAV airspace[C]∥ICRAT. International Conference for Research in Air Transportation. Barcelona: ICRAT, 2018: 1-8.
[73] MOHAMED SALLEH M F B, LOW K H. Concept of operations(ConOps)for traffic management of unmanned aircraft systems(TM-UAS)in urban environment[C]∥AIAA. 2017 AIAA Information Systems—AIAA Infotech Aerospace. Reston: AIAA, 2017: 1-13.
[74] CHO J, YOON Y. How to assess the capacity of urban airspace: a topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 137-149.
[75] 张玉梅,苑永月.我国低空空域管理现状与发展策略[J].电子技术,2020,49(7):104-105.
ZHANG Yu-mei, YUAN Yong-yue. Situation and development strategy of lower altitude airspace management in China[J]. Electronic Technology, 2020, 49(7): 104-105.(in Chinese)
[76] 石潇竹.我国低空空域结构调整与划设探讨[J].指挥信息系统与技术,2010,1(3):23-26.
SHI Xiao-zhu. Discussion on layout of Chinese low altitude airspace structure[J]. Command Information System and Technology, 2010, 1(3): 23-26.(in Chinese)
[77] 高 萍,王古常,郑 幸,等.无人机空域飞行的现状及发展趋势[C]∥CSAA.2014(第五届)中国无人机大会论文集.北京: CSAA,2014:638-641.
GAO Ping, WANG Gu-chang, ZHENG Xing, et al. Status and development trend of UAV airspace flight[C]∥CSAA. 2014(5th)China UAV Conference Proceedings. Beijing: CSAA, 2014: 638-641.(in Chinese)
[78] GHARIBI M, BOUTABA R, WASLANDER S L. Internet of drones[J]. IEEE Access, 2016, 4: 1148-1162.
[79] SUNIL E, ELLERBROEK J, HOEKSTRA J, et al. An analysis of decentralized airspace structure and capacity using fast-time simulations[J]. Journal of Guidance, Control and Dynamics, 2017, 40(1): 38-51.
[80] ROBERGE V, TARBOUCHI M, LABONTÉ G. Fast genetic algorithm path planner for fixed-wing military UAV using GPU[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2105-2117.
[81] LIAO Xiao-han, XU Chen-chen, YUE Huan-yin. Enable UAVs safely flight in low-altitude: a preliminary research of the public air route network of UAVs[C]∥IEEE. 2019 International Conference on Unmanned Aircraft Systems(ICUAS). New York: IEEE, 2019: 959-964.
[82] 张启钱,许卫卫,张洪海,等.复杂低空物流无人机路径规划[J].北京航空航天大学学报,2020,46(7):1275-1286.
ZHANG Qi-qian, XU Wei-wei, ZHANG Hong-hai, et al. Path planning for logistics UAV in complex low-altitude airspace[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1275-1286.(in Chinese)
[83] 唐 立,郝 鹏,张学军.基于改进蚁群算法的山区无人机路径规划方法[J].交通运输系统工程与信息,2019,19(1):158-164.
TANG Li, HAO Peng, ZHANG Xue-jun. An UAV path planning method in mountainous area based on an improved ant colony algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(1): 158-164.(in Chinese)
[84] 张洪海,李 翰,刘 皞,等.城市区域物流无人机路径规划[J].交通运输系统工程与信息,2020,20(6):22-29.
ZHANG Hong-hai, LI Han, LIU Hao, et al. Path planning for logistics unmanned aerial vehicle in urban area[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 22-29.(in Chinese)
[85] 王云常,戴朱祥,李 涛.基于A星算法与人工势场法的无人机路径规划[J].扬州大学学报(自然科学版),2019,22(3):36-38,49.
WANG Yun-chang, DAI Zhu-xiang, LI Tao. UAV path planning based on A-star algorithm and artificial potential field method[J]. Journal of Yangzhou University(Natural Science Edition), 2019, 22(3): 36-38, 49.(in Chinese)
[86] LIN Xi, WANG Chen-zhang, WANG Kai-ping, et al. Trajectory planning for unmanned aerial vehicles in complicated urban environments: a control network approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103-120.
[87] DIMAS N F. A GIS-based analysis for selecting ground infrastructure locations for urban air mobility[D]. Munich: Environmental Engineering Technical University of Munich, 2018.
[88] SHAVARANI S M, NEJAD M G, RISMANCHIAN F, et al. Application of hierarchical facility location problem for optimization of a drone delivery system: a case study of Amazon prime air in the city of San Francisco[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9): 3141-3153.
[89] 钱欣悦,张洪海,张 芳,等.末端配送物流无人机起降点选址分配问题研究[J].武汉理工大学学报(交通科学与工程版),2021,45(4):682-687,693.
QIAN Xin-yue, ZHANG Hong-hai, ZHANG Fang, et al. Research on location allocation of UAV landing points for terminal distribution logistics[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering), 2021, 45(4): 682-687, 693.(in Chinese)
[90] GOLABI M, SHAVARANI S M, IZBIRAK G. An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran Earthquake[J]. Natural Hazards, 2017, 87(3): 1545-1565.
[91] 任新惠,王 柳.即时配送下无人机全自动机场分区选址模型[J].计算机工程与应用,2021,57(10):266-272.
REN Xin-hui, WANG Liu. Location model of automatic airport partitioning for unmanned aerial vehicles under urban instant delivery[J]. Computer Engineering and Applications, 2021, 57(10): 266-272.(in Chinese)
[92] 陈 刚,付江月.军民融合背景下无人机配送中心选址问题研究[J].计算机工程与应用,2019,55(8):226-231,237.
CHEN Gang, FU Jiang-yue. Drone distribution center location problem under military-civilian integration strategy[J]. Computer Engineering and Applications, 2019, 55(8): 226-231, 237.(in Chinese)
[93] HONG I, KUBY M, MURRAY A T. A range-restricted recharging station coverage model for drone delivery service planning[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 198-212.
[94] CHAUHAN D, UNNIKRISHNAN A, FIGLIOZZI M. Maximum coverage capacitated facility location problem with range constrained drones[J]. Transportation Research Part C: EmergingTechnologies, 2019, 99: 1-18.
[95] VENKATESH N, PAYAN A P, JUSTIN C Y, et al. Optimal siting of sub-urban air mobility(sUAM)ground architectures using network flow formulation[C]∥AIAA. AIAA Aviation 2020 Forum. Reston: AIAA, 2020: 1-19.
[96] 张洪海,冯棣坤,张晓玮,等.城市物流无人机起降点布局规划研究[J].交通运输系统工程与信息,2022,22(3):207-214.
ZHANG Hong-hai, FENG Di-kun, ZHANG Xiao-wei, et al. Urban logistics unmanned aerial vehicle vertiports layout planning[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 207-214.(in Chinese)
[97] PREIS L. Quick sizing, throughput estimating and layout planning for vtol aerodromes—a methodology for vertiport design[C]∥AIAA. AIAA Aviation 2021 Forum. Reston: AIAA, 2021: 1-19.
[98] EASA. Prototype technical design specifications for vertiports[R]. Cologne: EASA, 2022.
[99] FAA. Engineering brief No.105 vertiport design[R]. Washington DC: FAA, 2022.
[100] VASCIK P D, HANSMAN R J. Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors[C]∥AIAA. AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 1-26.
[101] ZHANG Hong-hai, FEI Yu-han, LI Jing-yu, et al. Method of vertiport capacity assessment based on queuing theory of unmanned aerial vehicles[J]. Sustainability, 2023, 15(1): 709-732.
[102] RIMJHA M, TRANI A. Urban air mobility: factors affecting vertiport capacity[C]∥IEEE. 2021 Integrated Communications Navigation and Surveillance Conference(ICNS). New York: IEEE, 2021: 1-14.
[103] BULUSU V, SENGUPTA R, LIU Zhi-long. Unmanned aviation: to be free or not to be free?[C]∥FAA. 7th International Conference on Research in Air Transportation. Washington DC: FAA, 2016: 1-8.
[104] 邹依原.智慧城市环境下无人机安全间隔标定方法研究[D].南京:南京航空航天大学,2021.
ZOU Yi-yuan. Research on the demarcation method of safe separation for unmanned aerial vehicle in future smart cities[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.(in Chinese)
[105] BULUSU V, POLISHCHUK V, SENGUPTA R, et al. Capacity estimation for low altitude airspace[C]∥AIAA. 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 4266.
[106] BULUSU V, SENGUPTA R, MUELLER E R, et al. A throughput based capacity metric for low-altitude airspace[C]∥AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-9.