|Table of Contents|

Review on research of global major disaster event related port and shipping operation and management(PDF)


Research Field:
Publishing date:


Review on research of global major disaster event related port and shipping operation and management
YANG Zhong-zhen1 YANG Yun-qian1 XIN Xu23
(1. Donghai Academy, Ningbo University, Ningbo 315211, Zhejiang, China; 2. School of Economics and Management, Tongji University, Shanghai 200092, China; 3. Business School, The Hong Kong Polytechnic University, Hong Kong 999077, China)
waterway transportation port management shipping management operation management global disaster event review
To systematically sort out the research progress in the field of port and shipping operation and management after the global major disaster event, a total of 577 pieces of global major disaster events-related literature in the field of port and shipping management were analyzed by co-word clustering analysis using the knowledge graph analysis software VOSviewer included in Web of Science database and China National Knowledge Infrastructure(CNKI)database. Three research hotspots, including the shipping market, port and shipping operation and management, and port and shipping disaster prevention and control, were sorted out. The research objects, methods, and conclusions of the representative literatures concerning the abovementioned research hotspots were reviewed. The current research status and research gaps of port and shipping operation and managementin the context of global major disaster events were analyzed. Several potential research directions were proposed. Research results show that the studies on the shipping market in the context of global major disaster events are mainly related to the freight market, including the market supply and demand relationship, freight rate forecast, and design of transaction mechanisms between stakeholders considering risks. The studies on the port operation and management include the port operation performance assessment, port governance and business model, and sustainable development of ports. The studies on the shipping operation and management focus on changes in the shipping network patterns, shipping network design, and shipping service sales strategy. The studies on the port and shipping disaster prevention and control focus on the topics such as the seafarer stress, health management, and psychological intervention. Future research directions include the prediction of market quotations using the machine learning and big data, the game behavior of port and shipping stakeholders considering the market risk factors, realization of intelligent port and shipping operation and management by applying the blockchain, artificial intelligence, big data, 5G, digital twin, and other emerging technologies, as well as construction of collaborative governance mechanism of global ports and shipping enterprises. They also include the liner alliance shipping network design, profit allocation mechanism for alliance members, and discussion on the seafarer shift system, daily health management theory, psychological identification, and intervention method in the context of global major disaster event. 3 tabs, 3 figs, 119 refs.


[1] 镇 璐,诸葛丹,汪小帆.绿色港口与航运管理研究综述[J].系统工程理论与实践,2020,40(8):2037-2050.
ZHEN Lu, ZHUGE Dan, WANG Xiao-fan.Researches on green ports and shipping management: an overview[J]. Systems Engineering—Theory and Practice, 2020, 40(8): 2037-2050.(in Chinese)
[2] CHRISTIANSEN M, HELLSTEN E, PISINGER D, et al.Liner shipping network design[J]. European Journal of Operational Research, 2020, 286(1): 1-20.
[3] LIU Yang, XIN Xu, YANG Zhong, et al. Liner shipping network-transaction mechanism joint design model considering carbon tax and liner alliance[J]. Ocean and Coastal Management, 2021, 212: 105817.
[4] XIN Xu, WANG Xiao-li, ZHANG Tao, et al. Liner alliance shipping network design model with shippers' choice inertia and empty container relocation[J]. Electronic Research Archive, 2023, 31(9): 5509-5540.
[5] XIN Xu, LIU Miao-hui, WANG Xiao-li, et al. Investment strategy for blockchain technology in a shipping supply chain[J]. Ocean and Coastal Management, 2022, 226: 106263.
[6] 何 波.新冠肺炎疫情对我国在全球产业链地位的影响及应对[J].国际贸易,2020(6):45-52.
HE Bo. The impact of COVID-19 on China's status in the global industrial chain and the countermeasures[J]. Intertrade, 2020(6): 45-52.(in Chinese)
[7] CULLINANE K, HARALAMBIDES H. Global trends in
maritime and port economics: the COVID-19 pandemic and beyond[J]. Maritime Economics and Logistics, 2021, 23(3): 369-380.
[8] 王晓光,杨培蓓.航运物流企业数字化转型设计与效果分析[J].计算机工程与应用,2021,57(21):241-247.
WANG Xiao-guang, YANG Pei-bei.Design and effect analysis of digital transformation of shipping logistics enterprises[J]. Computer Engineering and Applications, 2021, 57(21): 241-247.(in Chinese)
[9] 杨秋平,谢新连,赵家保.船队规划研究现状与动态[J].交通运输工程学报,2010,10(4):85-90.
YANG Qiu-ping, XIE Xin-lian, ZHAO Jia-bao. Research status and prospect of fleet planning[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 85-90.(in Chinese)
[10] 袁裕鹏,王康豫,尹奇志,等.船舶航速优化综述[J].交通运输工程学报,2020,20(6):18-34.
YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34.(in Chinese)
routing and scheduling:status and perspectives[J]. Transportation Science, 2004, 38(1): 1-18.
[12] 包甜甜,连 峰,杨忠振.航运管理研究综述[J].交通运输工程学报,2020,20(4):55-69.
BAO Tian-tian, LIAN Feng, YANG Zhong-zhen. Research review of shipping management[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 55-69.(in Chinese)
[13] LAU Y Y, NG A K Y, FU Xiao-wen, et al. Evolution and research trends of container shipping[J]. Maritime Policy and Management, 2013, 40(7): 654-674.
[14] 常祎妹,朱晓宁,王 力.集装箱码头集成调度研究综述[J].交通运输工程学报,2019,19(1):136-146.
CHANG Yi-mei, ZHU Xiao-ning, WANG Li.Review on integrated scheduling of container terminals[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 136-146.(in Chinese)
[15] CHOWDHURY P, PAUL S K, KAISAR S, et al. COVID-19 pandemic related supply chain studies: a systematic review[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 148: 102271.
[16] SPIESKE A, BIRKEL H. Improving supply chain resilience through industry 4.0: a systematic literature review under the impressions of the COVID-19 pandemic[J]. Computers and Industrial Engineering, 2021, 158: 107452.
[17] GKIOTSALITIS K, CATS O. Public transport planning
adaption under the COVID-19 pandemic crisis: literature review of research needs and directions[J]. Transport Reviews, 2021, 41(3): 374-392.
methodology for developing evidence-informed management knowledge by means of systematic review[J]. British Journal of Management, 2003, 14(3): 207-222.
Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies[J]. BMC Medical Research Methodology, 2018, 18(1): 85.
[20] ZHANG Li-ming, ZHONG Yong-guang, GENG Yong.
A bibliometric and visual study on urban mining[J]. Journal of Cleaner Production, 2019, 239: 118067.
[21] MENG Cong-hui, DU Xiao-yun, REN Yi-tian, et al. Sustainable urban development: an examination of literature evolution on urban carrying capacity in the Chinese context[J]. Journal of Cleaner Production, 2020, 277: 122802.
[22] SI Hong-yun, SHI Jian-gang, WU Guang-dong, et al.
Mapping the bike sharing research published from 2010 to 2018: a scientometric review[J]. Journal of Cleaner Production, 2019, 213: 415-427.
[23] 代天伦,梁 晶.新型冠状病毒肺炎疫情对国际干散货航运市场的短期影响[J].科学技术与工程,2021,21(13):5556-5562.
DAI Tian-lun, LIANG Jing. The short-term impact of COVID-19 epidemic situation on the international dry bulk shipping market[J]. Science Technology and Engineering, 2021, 21(13): 5556-5562.(in Chinese)
[24] 张永锋,龚建伟,殷 明.新冠肺炎疫情对中国港航业的影响及其对策[J].交通运输工程学报,2020,20(3):159-167.
ZHANG Yong-feng, GONG Jian-wei, YIN Ming. Influences and response measures of COVID-19 epidemic on shipping and port industry in China[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 159-167.(in Chinese)
[25] GU Yi-miao, DONG Xiao-xu, CHEN Zhen-xi, et al.
Evaluating the impact of COVID-19 on capesize and panamax sectors: the method of empirical mode decomposition[J]. Maritime Policy and Management, 2022, https:∥doi.org/10.1080/03088839.2022.2143591.
Forecasting COVID-19 impact on RWI/ISL container throughput index by using SARIMA models[J]. Maritime Policyand Management, 2021, 48(8): 1096-1108.
[27] XU Lang, SHI Jia, CHEN Ji-hong, et al. Estimating the effect of COVID-19 epidemic on shipping trade: an empirical analysis using panel data[J]. Marine Policy, 2021, 133: 104768.
[28] 杨佳琳,葛颖恩.2021年世界交通运输大会水运学部会议 基于VAR模型的新冠肺炎疫情对航运市场的溢出效应分析[J].上海海事大学学报,2021,42(3):59-64.
YANG Jia-lin, GE Ying-en.Meeting of the Waterborne Transport Division, World Transport Convention 2021(WTC 2021): spillover effect analysis of COVID-19 epidemic on shipping market based on VAR model[J]. Journal of Shanghai Maritime University, 2021, 42(3): 59-64.(in Chinese)
[29] RAHMAN S M M, KIM J, LARATTE B. Disruption in
Circularity? Impact analysis of COVID-19 on ship recycling using Weibull tonnage estimation and scenario analysis method[J]. Resources, Conservation and Recycling, 2021, 164: 105139.
[30] BAI Xi-wen, LAM J S L, JAKHER A. Shipping sentiment and the dry bulk shipping freight market: new evidence from newspaper coverage[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 155: 102490.
[31] XU Heng, TAO Bin-bin, SHU Ya-qing, et al. Long-term
memory law and empirical research on dry bulks shipping market fluctuations[J]. Ocean and Coastal Management, 2021, 213: 105838.
[32] NOTTEBOOM T, PALLIS T, RODRIGUE J-P.Disruptions and resilience in global container shipping and ports: the COVID-19 pandemic versus the 2008-2009 financial crisis[J]. Maritime Economics and Logistics, 2021, 23(2): 179-210.
[33] 葛颖恩,杨佳琳.基于对比分析的新冠疫情对航运业的影响研究[J].交通信息与安全,2020,38(2):120-128.
GE Ying-en,YANG Jia-lin. Impacts of COVID-19 on shipping industry based on comparative analysis[J]. Journal of Transport Information and Safety, 2020, 38(2): 120-128.(in Chinese)
[34] ZHAO Hong-mei, HE Hong-di, LU Kai-fa, et al. Measuring the impact of an exogenous factor: an exponential smoothing model of the response of shipping to COVID-19[J]. Transport Policy, 2022, 118: 91-100.
[35] BALCI G, SURUCU-BALCI E. Blockchain adoption in the maritime supply chain: examining barriers and salient stakeholders in containerized international trade[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 156: 102539.
[36] YANG Rui-na, YU Ming-zhu, LEE C Y, et al. Contracting in ocean transportation with empty container repositioning under asymmetric information[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 145: 102173.
[37] WANG K Y, WEN Yuan, YIP T L, et al. Carrier-shipper risk management and coordination in the presence of spot freight market[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 149: 102287.
[38] FEDI L, FAURY O, RIGOT-MULLER P, et al. COVID-19 as a catalyst of a new container port hierarchy in Mediterranean Sea and Northern Range[J]. Maritime Economics and Logistics, 2022, 24(4): 747-777.
[39] KAMAL M R, CHOWDHURY M A F, HOSAIN M M. Stock market reactions of maritime shipping industry in the time of COVID-19 pandemic crisis: an empirical investigation[J]. Maritime Policy and Management, 2021, 49(8): 1184-1199.
COVID-19 impact on the shipping industry: an event study approach[J]. Transport Policy, 2022, 116: 157-164.
[41] JIANG Bao, HAIDER J, LI Jian, et al. Exploring the
impact of port-centric information integration on port performance: the case of Qingdao Port[J]. Maritime Policy and Management, 2023, 50(4): 466-491.
[42] 张 潜,吴剑英,宋 阳.海峡西岸港口物流发展对策研究[J].物流技术,2005,24(9):32-34.
ZHANG Qian, WU Jian-ying, SONG Yang. Countermeasures for developing port logistics in the western bank of the Taiwan Strait[J]. Logistics Technology, 2005, 24(9): 32-34.(in Chinese)
[43] 刘文君,何新华,胡文发.重大突发疫情对港口运营能力的影响研究[J].交通信息与安全,2020,38(2):102-111,119.
LIU Wen-jun, HE Xin-hua, HU Wen-fa.Impacts of major epidemic in public health emergencies on operational capacity of ports[J]. Journal of Transport Information and Safety, 2020, 38(2): 102-111, 119.(in Chinese)
[44] 刘连花,平 海.基于灰色预测模型的广州港货运发展研究[J].数学的实践与认识,2021,52(1):258-267.
LIU Lian-hua, PING Hai. Research on the freight development of Guangzhou Port based on grey prediction model[J]. Mathematics in Practice and Theory, 2021, 52(1): 258-267.(in Chinese)
[45] RUSSELL D, RUAMSOOK K, ROSO V. Managing supply chain uncertainty by building flexibility in container port capacity: a logistics triad perspective and the COVID-19 case[J]. Maritime Economics and Logistics, 2022, 24(1): 92-113.
[46] XU Lang, YANG Shu-miao, CHEN Ji-hong, et al. The effect of COVID-19 pandemic on port performance: evidence from China[J]. Ocean and Coastal Management, 2021, 209: 105660.
[47] ZHOU Xiao-xuan, JING Dan-yue, DAI Lei, et al. Evaluating
the economic impacts of COVID-19 pandemic on shipping and port industry: a case study of the Port of Shanghai[J]. Ocean and Coastal Management, 2022, 230: 106339.
[48] 耿 粲,钟 铭.集装箱港口群的吞吐量预测及运价博弈决策改进模型[J].中国航海,2022,45(2):100-108.
GENG Can, ZHONG Ming. A model for predicting throughput of container port group and improving decision-making in pricing game[J]. Navigation of China, 2022, 45(2): 100-108.(in Chinese)
[49] 靳廉洁,姚海元,胡贵麟,等.我国沿海集装箱运输及码头能力适应性分析[J].水运工程,2022(5):44-49.
JIN Lian-jie, YAO Hai-yuan, HU Gui-lin, et al. Adaptability analysis of container transportation and terminal capacity for coastal ports in China[J]. Port and Waterway Engineering, 2022(5): 44-49.(in Chinese)
[50] 郭梦雅,汪 超.新冠肺炎疫情对粤港澳大湾区港口的影响及对策建议[J].水运工程,2022(10):40-43.
GUO Meng-ya, WANG Chao. Impact of COVID-19 on ports in the Guangdong-Hong Kong-Macao Greater Bay Area and suggestions[J]. Port and Waterway Engineering, 2022(10): 40-43.(in Chinese)
[51] TAI Zi-li, GUO Ji, GUAN Ye-li, et al. Impact of COVID-19 on port production and operation based on system dynamics: a case study of Shanghai Port in China[J]. Journal of Advanced Transportation, 2021, 2021: 1-13.
[52] CHEN Yan-yu, ZHENG Wen-zhe, LI Wen-bo, et al. The robustness and sustainability of port logistics systems for emergency supplies from overseas[J]. Journal of Advanced Transportation, 2020, 2020: 8868533.
[53] XU Bo-wei, WANG Yu-qing, LI Jun-jun. Optimization of
port emergency materials dispatch with time windows constraints under uncertainties[J]. Discrete Dynamics in Nature and Society, 2021, 2021: 3977984.
[54] NARASIMHA P T, JENA P R, MAJHI R. Impact of
COVID-19 on the Indian seaport transportation and maritime supply chain[J]. Transport Policy, 2021, 110: 191-203.
[55] NOTTEBOOM T E, HARALAMBIDES H E. Port management and governance in a post-COVID-19 era: quo vadis?[J]. Maritime Economics and Logistics, 2020, 22(3): 329-352.
[56] YAP W Y, HO J. Port strategy and performance: empirical evidence from major container ports and implications for role of data analytics[J]. Maritime Policy and Management, 2023, 50(5): 608-628.
[57] YAN Ran, MO Hao-yu, GUO Xiao-meng, et al. Is port
state control influenced by the COVID-19? Evidence from inspection data[J]. Transport Policy, 2022, 123: 82-103.
[58] 鞠成飞,魏 珊,滕新栋,等.新冠肺炎疫情下在港维修国际航行船舶检疫监管存在的问题及对策[J].中国国境卫生检疫杂志,2022,45(1):49-52.
JU Cheng-fei, WEI Shan, TENG Xin-dong, et al. Problems and countermeasures for quarantine supervision of international ships for maintenance in port in the COVID-19 epidemic[J]. Chinese Journal of Frontier Health and Quarantine, 2022, 45(1): 49-52.(in Chinese)
[59] SHI Kun, WENG Jin-xian. Impacts of the COVID-19 epidemic on merchant ship activity and pollution emissions in Shanghai Port waters[J]. Science of the Total Environment, 2021, 790: 148198.
[60] MOCERINO L, QUARANTA F. How emissions from
cruise ships in the port of Naples changed in the COVID-19 lock down period[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2022, 236(1): 125-130.
[61] JU Yu-ting, HARGREAVES C A. The impact of shipping CO2 emissions from marine traffic in Western Singapore Straits during COVID-19[J]. Science of the Total Environment, 2021, 789: 148063.
[62] ACˇGUROVIAC'G L, JERAM S, MUROVEC J, et al. Impact of COVID-19 on environmental noise emitted from the port[J]. Science of the Total Environment, 2021, 756: 144147.
[63] BREEZE H, LI Shi-han, MAROTTE E C, et al. Changes in underwater noise and vessel traffic in the approaches to Halifax Harbor, Nova Scotia, Canada[J]. Frontiers in Marine Science, 2021, 8: 674788.
Underwater sound levels in glacier bay during reduced vessel traffic due to the COVID-19 pandemic[J]. Frontiers in Marine Science, 2021, 8: 674787.
[65] SHEN Li-xin, WANG Yao-dong, LIU Kun-peng, et al.
Synergistic path planning of multi-UAVs for air pollution detection of ships in ports[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 144: 102128.
et al. COVID-19 impact on maritime traffic and corresponding pollutant emissions. The case of the Port of Barcelona[J]. Journal of Environmental Management, 2022, 310: 114787.
[67] ZHAO Hui-da, LIU Jia-guo, HU Xi-yuan. Servitization with blockchain in the maritime supply chain[J]. Ocean and Coastal Management, 2022, 225: 106195.
[68] XIN Xin, LIU Miao-hui, WANG Xiao-li, et al. Investment strategy for blockchain technology in a shipping supply chain[J]. Ocean and Coastal Management, 2022, 226: 106263.
[69] 郭 瑾,匡海波,余方平.基于Gamma的低碳港口形成机理研究——以日照港为例[J].科研管理,2020,41(5):240-249.
GUO Jin, KUANG Hai-bo, YU Fang-ping. A research on the port low carbon evolution mechanism based on Gamma function: a case study of Rizhao Port[J]. Science Research Management, 2020, 41(5): 240-249.(in Chinese)
[70] SANCHEZ-GONZALEZ P L, DÍAZ-GUTIÉRREZ D, LEO T J, et al. Toward digitalization of maritime transport?[J]. Sensors, 2019, 19(4): 926.
[71] YANG C S. Maritime shipping digitalization: blockchain-based
technology applications, future improvements, and intention to use[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 131: 108-117.
[72] FAGERHOLT K. Optimal fleet design in a ship routing
problem[J]. International Transactions in Operational Research, 1999, 6(5): 453-464.
[73] 陈 康,赵梓州,吴明昊,等.考虑船舶封存与压港的电煤船舶调度优化模型[J].交通运输工程学报,2020,20(3):178-191.
CHEN Kang, ZHAO Zi-zhou, WU Ming-hao, et al.Optimization model of electric coal ship scheduling under considering ship storage and port congestion[J]. Journal of Traffic and Transportation Engineering,2020, 20(3): 178-191.(in Chinese)
[74] WANG Ting-song, TIAN Xue-cheng, WANG Ya-dong.
Container slot allocation and dynamic pricing of time-sensitive cargoes considering port congestion and uncertain demand[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 144: 102149.
[75] LIU Bao-li, LI Zi-chun, WANG Ya-dong, et al. Short-term berth planning and ship scheduling for a busy seaport with channel restrictions[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 154: 102467.
[76] PSARAFTIS H N, KONTOVAS C A. Ship speed optimization:concepts, models and combined speed-routing scenarios[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 52-69.
[77] SHINTANI K, IMAI A, NISHIMURA E, et al. The container shipping network design problem with empty container repositioning[J]. Transportation Research Part E: Logistics and Transportation Review, 2007, 43(1): 39-59.
[78] GAO Shi-qing, XIN Xu, LI Cui, et al. Container ocean
shipping network design considering carbon tax and choice inertia of cargo owners[J]. Ocean and Coastal Management, 2022, 216: 105986.
[79] ZHUGE Dan, WANG Shuai-an, WANG D Z W. A joint
liner ship path, speed and deployment problem under emission reduction measures[J]. Transportation Research Part B: Methodological, 2021, 144: 155-173.
[80] 万程鹏,陶嘉乐,伍 静,等.新冠肺炎疫情对中国国际航运网络空间格局影响分析[J].交通信息与安全,2020,38(2):129-135.
WAN Cheng-peng, TAO Jia-le, WU Jing, et al. An analysis of influences of the COVID-19 on the spatial structure of the China's global shipping network[J]. Journal of Transport Information and Safety, 2020, 38(2): 129-135.(in Chinese)
[81] JIN Lian-jie, CHEN Jing, CHEN Zi-lin, et al. Impact of
COVID-19 on China's international liner shipping network based on AIS data[J]. Transport Policy, 2022, 121: 90-99.
[82] 邵 斐,张永锋,真 虹.中国进口铁矿石海运网络抗毁性仿真[J].交通运输系统工程与信息,2022,22(1):311-321.
SHAO Fei, ZHANG Yong-feng, ZHEN Hong. Invulnerability simulation analysis of Chinese iron ore imports shipping network[J]. Journal of Transportation Systems Engineering and Information Technology. 2022, 22(1): 311-321.(in Chinese)
[83] MILLEFIORI L M, BRACA P, ZISSIS D, et al.COVID-19 impact on global maritime mobility[J]. Scientific Reports, 2021, 11: 18039.
[84] GUERRERO D, LETROUIT L, PAIS-MONTES C. The container transport system during Covid-19:an analysis through the prism of complex networks[J]. Transport Policy, 2022, 115: 113-125.
[85] DIRZKA C, ACCIARO M. Global shipping network dynamics during the COVID-19 pandemic's initial phases[J]. Journal of Transport Geography, 2022, 99: 103265.
[86] ZHOU Yu-sheng, LI Xue, YUEN K F. Holistic risk
assessment of container shipping service based on Bayesian network modelling[J]. Reliability Engineering and System Safety, 2022, 220: 108305.
[87] KANRAK M, NGUYEN H O. An analysis of connectivity, assortativity and cluster structure of the Asian-Australasian cruise shipping network[J]. Maritime Transport Research, 2022, 3: 100048.
[88] 王振宇,谢新连,许小卫.新冠疫情和“双碳战略”背景下班轮运输多目标优化[J].大连海事大学学报,2022,48(1):31-41.
WANG Zhen-yu, XIE Xin-lian, XU Xiao-wei. Multi-objective optimization of liner transportation under COVID-19 and dual carbon strategy background[J]. Journal of Dalian Maritime University, 2022, 48(1): 31-41.(in Chinese)
[89] SUN He-ying, LAM J S L, ZENG Qing-cheng. The dual-channel sales strategy of liner slots considering shipping e-commerce platforms[J]. Computers and Industrial Engineering, 2021, 159: 107516.
[90] WONG E Y C, LING K K T, ZHANG Xin-bo. Yield and port performance shipping allocation model for revamp service deployments under a dynamic trading landscape[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103279.
[91] XIN Xu, WANG Xiao-li, MA Li-jun, et al. Shipping network design-infrastructure investment joint optimization model: a case study of West Africa[J]. Maritime Policy and Management, 2022, 49(5): 620-646.
[92] SALIBA M, AZZOPARDI F, MUSCAT R, et al. Trends in vessel atmospheric emissions in the Central Mediterranean over the last 10 years and during the COVID-19 outbreak[J]. Journal of Marine Science and Engineering, 2021, 9(7): 762.
[93] ZHAO Yu-zhen, YE Jia-jun, ZHOU Jing-miao. Container fleet renewal considering multiple sulfur reduction technologies and uncertain markets amidst COVID-19[J]. Journal of Cleaner Production, 2021, 317: 128361.
[94] YE Guang-qiong, ZHOU Jun-yu, YIN Wen-wei, et al. Are shore power and emission control area policies always effective together for pollutant emission reduction?—An analysis of their joint impacts at the post-pandemic era[J]. Ocean and Coastal Management, 2022, 224: 106182.
[95] PU Shu-yi, LAM J S L. Greenhouse gas impact of
digitalizing shipping documents: blockchain vs. centralized systems[J]. Transportation Research Part D: Transport and Environment, 2021, 97: 102942.
[96] LU C S, LIU Wen-hong, WOOLDRIDGE C. Maritime
environmental governance and green shipping[J]. Maritime Policy and Management, 2014, 41(2): 131-133.
[97] 孙志宽,陈梅玥,张 滟,等.2021年世界交通运输大会水运学部会议 新冠肺炎疫情对引航安全的影响及对策研究[J].上海海事大学学报,2021,42(3):71-75.
SUN Zhi-kuan, CHEN Mei-yue, ZHANG Yan, et al.Meeting of the Waterborne Transport Division, World Transport Convention 2021( WTC 2021): study on impact of COVID-19 on pilot safety and countermeasures[J]. Journal of Shanghai Maritime University, 2021, 42(3): 71-75.(in Chinese)
[98] LI Hua, MENG Shu-han, TONG He-long. How to control cruise ship disease risk? Inspiration from the research literature[J]. Marine Policy, 2021, 132: 104652.
[99] LIU Xiao-fei, CHANG Y C. An emergency responding
mechanism for cruise epidemic prevention—taking COVID-19 as an example[J]. Marine Policy, 2020, 119: 104093.
[100] CHOQUET A, SAM-LEFEBVRE A. Ports closed to cruise ships in the context of COVID-19:what choices are there for coastal states?[J]. Annals of Tourism Research, 2021, 86: 103066.
[101] SUN Si-qi, ZHAO L L. Legal issues and challenges in
addressing the coronavirus outbreak on large cruise ships: a critical examination of port state measures[J]. Ocean and Coastal Management, 2022, 217: 105995.
[102] YUEN K F, CAO Y, BAI X, et al. The psychology of cruise service usage post COVID-19: health management and policy implications[J]. Marine Policy, 2021, 130: 104586.
[103] WANG Zhi-huan, YAO Meng-yuan, MENG Cheng-guang, et al. Risk assessment of the overseas imported COVID-19 of ocean-going ships based on AIS and infection data[J]. ISPRS International Journal of Geo-Information, 2020, 9(6): 351.
[104] 鲍君忠,秦 莹,王西召,等.基于Logistic模型的大型邮轮疫情预测分析[J].交通信息与安全,2020,38(2):136-142,148.
BAO Jun-zhong, QIN Ying, WANG Xi-zhao, et al. A prediction and analysis of epidemic outbreaks on large cruise ships based on a Logistic model[J]. Journal of Transport Information and Safety, 2020, 38(2): 136-142, 148.(in Chinese)
[105] 梁 杰,殷华兵,徐 蓉,等.基于常态化疫情防控需求的商船设计[J].交通信息与安全,2020,38(2):172-178.
LIANG Jie, YIN Hua-bing, XU Rong, et al. Merchant ship design based on demands of normalized epidemic prevention and control[J]. Journal of Transport Information and Safety, 2020, 38(2): 172-178.(in Chinese)
[106] RADIC A, LÜCK M, ARIZA-MONTES A, et al. Fear and trembling of cruise ship employees: psychological effects of the COVID-19 pandemic[J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6741.
[107] ZHOU Shu-duo, HAN Lu, LIU Pei-long, et al. Global
health governance for travel health: lessons learned from the coronavirus disease 2019(COVID-19)outbreaks in large cruise ships[J]. Global Health Journal, 2020, 4(4): 133-138.
[108] 李韵依.“人类卫生健康共同体”视域下邮轮疫情防控的法律应对[J].广东社会科学,2022(2):264-273.
LI Yun-yi. Legal response to cruise ship epidemic prevention and control from perspective of “human health community”[J]. Social Sciences in Guangdong, 2022(2): 264-273.(in Chinese)
[109] LIN Qian-feng, SON J Y. Sustainable ship management post COVID-19 with in-ship positioning services[J]. Sustainability, 2021, 14(1): 369.
[110] 赵丽云,孙 维.疫情之下的船员远程教育培训系统与教育模式的研究[J].价值工程,2020,39(16):10-12.
ZHAO Li-yun, SUN Wei.Research on distance education and training system and education model of crew under epidemic situation[J]. Value Engineering, 2020, 39(16): 10-12.(in Chinese)
[111] DE BEUKELAER C. COVID-19 border closures cause
humanitarian crew change crisis at sea[J]. Marine Policy, 2021, 132: 104661.
[112] PAUKSZTAT B, GRECH M R, KITADA M. The impact of the COVID-19 pandemic on seafarers' mental health and chronic fatigue:beneficial effects of onboard peer support, external support and Internet access[J]. Marine Policy, 2022, 137: 104942.
[113] SLIKOVIAC'G A. Seafarers' well-being in the context of the COVID-19 pandemic: a qualitative study[J]. Work, 2020, 67(4): 799-809.
[114] QIN Wen-zhe, LI Lei, ZHU Dong-shan, et al. Prevalence and risk factors of depression symptoms among Chinese seafarers during the COVID-19 pandemic: a cross-sectional study[J]. BMJ Open, 2021, 11(6): e048660.
[115] PAUKSZTAT B, ANDREI D M, GRECH M R. Effects of the COVID-19 pandemic on the mental health of seafarers: a comparison using matched samples[J]. Safety Science, 2022, 146: 105542.
[116] GUO Yu, YAN Ran, WU Yi-wei, et al. Modeling seafarer change at seaports in COVID-19[M]∥QU Xiao-bo, ZHEN Lu, HOWLETT R J, et al. Smart Transportation Systems 2021. Berlin: Springer, 2021: 115-122.
[117] JIANG Yu-jie, WAN Zheng, CHEN Ji-hong, et al.
Knowledge mapping of seafarers' health research: a bibliometric analysis[J]. Maritime Policy and Management, 2023, 50(5): 692-705.
Industrial seafood systems in the immobilizing COVID-19 moment[J]. Agriculture and Human Values, 2020, 37(3): 655-656.
[119] VANDERGEEST P, MARSCHKE M, MACDONNELL M. Seafarers in fishing: a year into the COVID-19 pandemic[J]. Marine Policy, 2021, 134: 104796.


Last Update: 2023-11-10