[1] 刘 静,关 伟.交通流预测方法综述[J].公路交通科技,2004,21(3):82-85.
LIU Jing, GUAN Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3): 82-85.(in Chinese)
[2] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: where we are and where we're going[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 3-19.
[3] LANA I, DEL SER J, VELEZ M, et al. Road traffic forecasting: recent advances and new challenges[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10(2): 93-109.
[4] YIN Xue-yan, WU Gen-ze, WEI Jin-ze, et al. Deep learning on traffic prediction: methods, analysis and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4927-4943.
[5] LI Fu-xian, FENG Jie, YAN Huan, et al. Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution[J]. ArXiv Preprint, 2021, DOI: arXiv: 2104.14917.
[6] YE Jie-xia, ZHAO Juan-juan, YE Ke-jiang, et al. How to build a graph-based deep learning architecture in traffic domain: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3904-3924.
[7] BUI K H N, CHO J, YI H. Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues[J]. Applied Intelligence, 2022, 52(3): 2763-2774.
[8] JIANG Wei-wei, LUO Jia-yun. Graph neural network for traffic forecasting: a survey[J]. Expert Systems with Applications, 2022, 207: 117921.
[9] DHAMANIYA A, CHANDRA S. Speed prediction models for urban arterials under mixed traffic conditions[J]. Procedia—Social and Behavioral Sciences, 2013, 104: 342-351.
[10] LARTEY J D. Predicting traffic congestion: a queuing perspective[J]. Open Journal of Modelling and Simulation, 2014, 2(2): 57-66.
[11] LI Xiao-peng, WANG Xin, OUYANG Yan-feng. Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws[J]. Transportation Research Part B: Methodological, 2012, 46(3): 409-423.
[12] KANOH H, FURUKAWA T, TSUKAHARA S, et al. Short-term traffic prediction using fuzzy c-means and cellular automata in a wide-area road network[C]∥IEEE. Proceedings of 2005 IEEE Intelligent Transportation Systems. New York: IEEE, 2005: 381-385.
[13] SKABARDONIS A, GEROLIMINIS N. Real-time estimation of travel times on signalized arterials[M]∥Elsevier. Transportation and Traffic Theory. Amsterdam: Elsevier, 2005: 387-406.
[14] OH S, BYON Y J, JANG K, et al. Short-term travel-time prediction on highway: a review on model-based approach[J]. KSCE Journal of Civil Engineering, 2018, 22(1): 298-310.
[15] TANG Li-yang, ZHAO Yang, CABRERA J, et al. Forecasting short-term passenger flow: an empirical study on Shenzhen metro[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3613-3622.
[16] HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121(3): 249-254.
[17] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11.
[18] MCFADDEN J, YANG W T, DURRANS S R. Application of artificial neural networks to predict speeds on two-lane rural highways[J]. Transportation Research Record, 2001, 1751(1): 9-17.
[19] LING Xian-yao, FENG Xin-xin, CHEN Zhong-hui, et al. Short-term traffic flow prediction with optimized multi-kernel support vector machine[C]∥IEEE. 2017 IEEE Congress on Evolutionary Computation(CEC). New York: IEEE, 2017: 294-300.
[20] 张晓利,贺国光,陆化普.基于K-邻域非参数回归短时交通流预测方法[J].系统工程学报,2009,24(2):178-183.
ZHANG Xiao-li, HE Guo-guang,LU Hua-pu. Short-term traffic flow forecasting based on K-nearest neighbors non-parametric regression[J]. Journal of Systems Engineering, 2009, 24(2): 178-183.(in Chinese)
[21] VANAJAKSHI L, RILETT L R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed[C]∥IEEE. IEEE Intelligent Vehicles Symposium, 2004. New York: IEEE, 2004: 194-199.
[22] TAN Hua-chun, XUAN Xuan, WU Yuan-kai, et al.A comparison of traffic flow prediction methods based on DBN[C]∥ASCE. 16th COTA International Conference of Transportation Professionals. Reston: ASCE, 2016: 273-283.
[23] NGUYEN T, NGUYEN G, NGUYEN B M. EO-CNN: an enhanced CNN model trained by equilibrium optimization for traffic transportation prediction[J]. Procedia Computer Science, 2020, 176: 800-809.
[24] MA Xiao-lei, TAO Zhi-min, WANG Yin-hai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197.
[25] SHAO Hong-xin, SOONG B H. Traffic flow prediction with long short-term memory networks(LSTMs)[C]∥IEEE. 2016 IEEE Region 10 Conference(TENCON). New York: IEEE, 2016: 2986-2989.
[26] DU Sheng-dong, LI Tian-rui, GONG Xun, et al. Traffic flow forecasting based on hybrid deep learning framework[C]∥IEEE. 2017 12th International Conference on Intelligent Systems and Knowledge Engineering(ISKE). New York: IEEE, 2017: 17505846.
[27] ZHANG Jun-bo, ZHENG Yu, QI De-kang. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]∥ACM. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. New York: ACM, 2017: 1655-1661.
[28] YANG Dan, CHEN Kai-rui, YANG Meng-ning, et al. Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features[J]. IET Intelligent Transport Systems, 2019, 13(10): 1475-1482.
[29] CAO Miao-miao, LI V O K, CHAN V W S. A CNN-LSTM model for traffic speed prediction[C]∥IEEE. 2020 IEEE 91st Vehicular Technology Conference(VTC2020-Spring).New York: IEEE, 2020: 1-5.
[30] ZOU Zhe-ne, PENG Hao, LIU Lin, et al. Deep convolutional mesh RNN for urban traffic passenger flows prediction[C]∥IEEE. 2018 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).
New York: IEEE, 2018: 1305-1310.[31] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
[32] ZHANG Tian-pu, DING Wei-long, CHEN Tao, et al. A graph convolutional method for traffic flow prediction in highway network[J]. Wireless Communications and Mobile Computing, 2021, 2021: 1997212.
[33] HAN Yong, PENG Tong-xin, WANG Cheng, et al. A hybrid GLM model for predicting citywide spatio-temporal metro passenger flow[J]. ISPRS International Journal of Geo-Information, 2021, 10(4): 222.
[34] FENG Si-yuan, KE Jin-tao, YANG Hai, et al. A multi-task matrix factorized graph neural network for co-prediction of zone-based and OD-based ride-hailing demand[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5704-5716.
[35] SONG Chao, LIN You-fang, GUO Sheng-nan, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921.
[36] MA Xiao-lei, DAI Zhuang, HE Zheng-bing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818.
[37] XUE Gang, LIU Shi-feng, REN Long, et al. Forecasting the subway passenger flow under event occurrences with multivariate disturbances[J]. Expert Systems with Applications, 2022, 188: 116057.
[38] GUO Kan, HU Yong-li, QIAN Zhen, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1138-1149.
[39] GUO Sheng-nan, LIN You-fang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
[40] GENG Xu, LI Ya-guang, WANG Le-ye, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]∥ACM. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2019: 3656-3663.
[41] GAO A, ZHENG Lin-jiang, WANG Zi-xu, et al. Attention based short-term metro passenger flow prediction[C]∥Springer. International Conference on Knowledge Science, Engineering and Management. Berlin: Springer, 2021: 598-609.
[42] 闫 旭,范晓亮,郑传潘,等.基于图卷积神经网络的城市交通态势预测算法[J].浙江大学学报(工学版),2020,54(6):1147-1155.
YAN Xu, FAN Xiao-liang, ZHENG Chuan-pan, et al. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(6): 1147-1155.(in Chinese)
[43] 曾筠程,邵敏华,孙立军,等.基于有向图卷积神经网络的交通预测与拥堵管控[J].中国公路学报,2021,34(12):239-248.
ZENG Yun-cheng, SHAO Min-hua, SUN Li-jun, et al. Traffic prediction and congestion control based on directed graph convolution convolutional neural network[J]. China Journal of Highway and Transport, 2021, 34(12): 239-248.(in Chinese)
[44] LEE K, RHEE W. DDP-GCN: multi-graph convolutional network for spatiotemporal traffic forecasting[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103466.
[45] ZHAO Ling, SONG Yu-jiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858.
[46] YU Bing, YIN Hao-teng, ZHU Zhan-xing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]∥ACM. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 3634-3640.
[47] LI Ya-guang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. ArXiv Preprint, 2018, DOI: arXiv: 1707.01926.
[48] XU Ming-xing, DAI Wen-rui, LIU Chun-miao, et al. Spatial-temporal transformer networks for traffic flow forecasting[J]. ArXiv Preprint, 2018, DOI: arXiv: 2001.02908.
[49] LYU Ming-qi, HONG Zhao-xiong, CHEN Ling, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348.
[50] XIA Tong, LIN Jun-jie, LI Yong, et al. 3DGCN: 3-dimensional dynamic graph convolutional network for citywide crowd flow prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(6): 1-21.
[51] BAI Lei, YAO Li-na, KANHERE S S, et al. STG2Seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting[C]∥International Joint Conferences on Artificial Intelligence Organization. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 1981-1987.
[52] YAO Hua-xiu, WU Fei, KE Jin-tao, et al. Deep multi-view spatial-temporal network for taxi demand prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 2588-2595.
[53] YU Bing, LI Meng-zhang, ZHANG Ji-yong, et al. 3D graph convolutional networks with temporal graphs: a spatial information free framework for traffic forecasting[J]. ArXiv Preprint, 2019, DOI: arXiv: 1903.00919.
[54] BAI Lei, YAO Li-na, LI Can, et al. Adaptive graph convolutional recurrent network for traffic forecasting[J]. Advances in Neural Information Processing Systems, 2020, 33: 17804-17815.
[55] HAN Liang-zhe, DU Bo-wen, SUN Lei-lei, et al. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting[C]∥ACM. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 547-555.
[56] ROY A, ROY K K, ALI A A, et al. Unified spatio-temporal modeling for traffic forecasting using graph neural network[C]∥IEEE. 2021 International Joint Conference on Neural Networks(IJCNN). New York: IEEE, 2021: 1-8.
[57] WANG Xiao-yang, MA Yao, WANG Yi-qi, et al. Traffic flow prediction via spatial temporal graph neural network[C]∥ACM. Proceedings of the Web Conference 2020. New York: ACM, 2020: 1082-1092.
[58] YU J J Q, GU Jia-tao. Real-time traffic speed estimation with graph convolutional generative autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3940-3951.
[59] ZHANG Qi, JIN Qi-zhao, CHANG Jian-long, et al. Kernel-weighted graph convolutional network: a deep learning approach for traffic forecasting[C]∥IEEE. 2018 24th International Conference on Pattern Recognition(ICPR). New York: IEEE, 2018: 1018-1023.
[60] WANG Qiang, XU Chen, ZHANG Wen-qi, et al. GraphTTE: travel time estimation based on attention-spatiotemporal graphs[J]. IEEE Signal Processing Letters, 2021, 28: 239-243.
[61] ZHU Jia-wei, WANG Qiong-jie, TAO Chao, et al. AST-GCN: attribute-augmented spatiotemporal graph convolutional network for traffic forecasting[J]. IEEE Access, 2021, 9: 35973-35983.
[62] WANG Yuan-dong, YIN Hong-zhi, CHEN Hong-xu, et al. Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling[C]∥ACM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1227-1235.
[63] BAI Lei, YAO Li-na, WANG Xian-zhi, et al. Deep spatial-temporal sequence modeling for multi-step passenger demand prediction[J]. Future Generation Computer Systems, 2021, 121: 25-34.
[64] WANG Jing-cheng, ZHANG Yong, WEI Yu, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7891-7903.
[65] CHEN Wei, LI Zong-ping, LIU Can, et al. A deep learning model with conv-LSTM networks for subway passenger congestion delay prediction[J]. Journal of Advanced Transportation, 2021, 2021: 1-10.
[66] LIU Ling-bo, CHEN Jing-wen, WU He-feng, et al. Physical-virtual collaboration modeling for intra- and inter-station metro ridership prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(4): 3377-3391.
[67] ESSIEN A, PETROUNIAS I, SAMPAIO P, et al. A deep-learning model for urban traffic flow prediction with traffic events mined from twitter[J]. World Wide Web, 2021, 24(4): 1345-1368.
[68] SHI Liu-shuai, WANG Le, LONG Cheng-jiang, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction[C]∥IEEE. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2021: 8990-8999.
[69] ZHANG Jun-bo, ZHENG Yu, SUN Jun-kai, et al. Flow prediction in spatio-temporal networks based on multitask deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3): 468-478.
[70] 李松江,祝绍凇,杨华民,等.基于时空相关性多任务神经网络的交通预测[J].计算机应用与软件,2021,38(9):286-292.
LI Song-jiang, ZHU Shao-song, YANG Hua-min, et al. Traffic prediction based on spatiotemporal correlation multitask neural network[J]. Computer Applications and Software, 2021, 38(9): 286-292.(in Chinese)
[71] YIN Xue-yan, WU Gen-ze, WEI Jin-ze, et al. Multi-stage attention spatial-temporal graph networks for traffic prediction[J]. Neurocomputing, 2021, 428: 42-53.
[72] CAI Ling, JANOWICZ K, MAI Geng-chen, et al. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755.
[73] FANG Shen, ZHANG Qi, MENG Gao-feng, et al. GSTNet: global spatial-temporal network for traffic flow prediction[C]∥International Joint Conferences on Artificial Intelligence Organization. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 2286-2293.
[74] YU B, LEE Y, SOHN K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network(GCN)[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 189-204.
[75] WRIGHT M A, EHLERS S F G, HOROWITZ R. Neural-attention-based deep learning architectures for modeling traffic dynamics on lane graphs[C]∥IEEE. 2019 IEEE Intelligent Transportation Systems Conference(ITSC). New York: IEEE, 2019: 3898-3905.
[76] CHAI Di, WANG Le-ye, YANG Qiang. Bike flow prediction with multi-graph convolutional networks[C]∥ACM. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 397-400.
[77] KE Jin-tao, QIN Xiao-ran, YANG Hai, et al. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102858.
[78] MOHANTY S, POZDNUKHOV A, CASSIDY M. Region-wide congestion prediction and control using deep learning[J]. Transportation Research Part C: Emerging Technologies, 2020, 116: 102624.
[79] SUN Ya-sheng, HE Tao, HU Jie, et al. Socially-aware graph convolutional network for human trajectory prediction[C]∥IEEE. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference(ITNEC). New York: IEEE, 2019: 325-333.
[80] JEON H, CHOI J, KUM D. SCALE-net: scalable vehicle trajectory prediction network under random number of interacting vehicles via edge-enhanced graph convolutional neural network[C]∥IEEE. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). New York: IEEE, 2020: 2095-2102.
[81] WU Zong-han, PAN Shi-rui, CHEN Feng-wen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[82] ZHOU Jie, CUI Gang-qu, HU Sheng-ding, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[83] ZHANG Zi-wei, CUI Peng, ZHU Wen-wu. Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 249-270.
[84] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[J]. ArXiv Preprint, 2017, DOI: arXiv: 1704.01212.
[85] WEI Long, YU Zheng-xu, JIN Zhong-ming, et al. Dual graph for traffic forecasting[J]. IEEE Access, 2019(99): 1.
[86] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]∥ACM. Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:1025-1035.
[87] ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks[C]∥NIPS. Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2016: 2001-2009.
[88] HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129-150.
[89] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral riltering[C]∥NIPS. Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2016: 3844-3852.
[90] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. ArXiv Preprint, 2017, DOI: arXiv: 1609.02907.
[91] VELIACˇGKOVIAC'G P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. ArXiv Preprint,2017, DOI: arXiv: 1710.10903.
[92] ZHANG Jia-ni, SHI Xing-jia, XIE Jun-yuan, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[J]. ArXiv Preprint, 2018, DOI: arXiv: 1803.07294.
[93] KIPF T N, WELLING M. Variational graph auto-encoders[J]. ArXiv Preprint, 2016, DOI: arXiv: 1611.07308.
[94] ZHAO Fei-fei, WANG Wei-ping, SUN Hui-jun, et al. Station-level short-term demand forecast of carsharing system via station-embedding-based hybrid neural network[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 1-19.
[95] ZHOU Fan, YANG Qing, ZHONG Ting, et al. Variational graph neural networks for road traffic prediction in intelligent transportation systems[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2802-2812.
[96] LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. ArXiv Preprint, 2015, DOI: arXiv: 1506.00019.
[97] 倪庆剑,彭文强,张志政,等.基于信息增强传输的时空图神经网络交通流预测[J].计算机研究与发展,2022,59(2):282-293.
NI Qing-jian, PENG Wen-qiang, ZHANG Zhi-zheng, et al. Traffic flow prediction of spatiotemporal graph neural network based on information enhancement transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293.(in Chinese)
[98] ZHANG Shao-kun, GUO Yao, ZHAO Pei-ze, et al. A graph-based temporal attention framework for multi-sensor traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7743-7758.
[99] GUO Kan, HU Yong-li, SUN Yan-fei, et al. Hierarchical graph convolution networks for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(1): 151-159.
[100] LI Guo-peng, KNOOP V L, VAN LINT H. Multistep traffic forecasting by dynamic graph convolution: interpretations of real-time spatial correlations[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103185.
[101] TIAN Chen-yu, CHAN W K. Spatial-temporal attention wavenet: a deep learning framework for traffic prediction considering spatial-temporal dependencies[J]. IET Intelligent Transport Systems, 2021, 15(4): 549-561.
[102] PARK C, LEE C, BAHNG H, et al. ST-GRAT: a novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed[C]∥ACM. Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1215-1224.
[103] GENG Xu, LI Ya-guang, WANG Le-ye, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3656-3663.
[104] YE Jun-cheng, SUN Lei-lei, DU Bo-wen, et al. Coupled layer-wise graph convolution for transportation demand prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4617-4625.
[105] ZI Wen-jie, XIONG Wei, CHEN Hao, et al. TAGCN: station-level demand prediction for bike-sharing system via a temporal attention graph convolution network[J]. Information Sciences, 2021, 561: 274-285.
[106] WANG Xi, CHAI Yi-bo, LI Hui, et al. Graph convolutional network-based model for incident-related congestion prediction: a case study of Shanghai Expressways[J]. ACM Transactions on Management Information Systems, 2021, 12(3): 1-22.
[107] ZHANG Jin-lei, CHEN Feng, CUI Zhi-yong, et al. Deep learning architecture for short-term passenger flow forecasting in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 7004-7014.
[108] HUA Xin, LIU Wei. Spatial-temporal network data-driven multi-layer traffic knowledge graph reconstruction for dynamic prediction[C]∥IEEE. 2022 4th International Conference on Robotics and Computer Vision(ICRCV). New York: IEEE, 2022: 20-24.
[109] ZHU Jia-wei, HAN Xing, DENG Han-han, et al. KST-GCN: a knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15055-15065.
[110] ZHONG Ting, XU Zhe-yang, ZHOU Fan. Probabilistic graph neural networks for traffic signal control[C]∥IEEE. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). New York: IEEE, 2021: 4085-4089.
[111] ZHANG Heng-yuan, ZHAO Su-yao, LIU Rui-heng, et al. Automatic traffic anomaly detection on the road network with spatial-temporal graph neural network representation learning[J]. Wireless Communications and Mobile Computing, 2022, 2022: 4222827.
[112] JIN Ke-fan, WANG Hong-ye, LIU Chang-xing, et al. Graph neural network based relation learning for abnormal perception information detection in self-driving scenarios[C]∥IEEE. 2022 International Conference on Robotics and Automation(ICRA). New York: IEEE, 2022: 8943-8949.
[113] LIANG Yue-bing, HUANG Guan, ZHAO Zhan. Joint demand prediction for multimodal systems: a multi-task multi-relational spatiotemporal graph neural network approach[J]. Transportation Research Part C: Emerging Technologies, 2022, 140: 103731.
[114] TYGESEN M N, PEREIRA F C, RODRIGUES F. Unboxing the graph: towards interpretable graph neural networks for transport prediction through neural relational inference[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103946.
[115] YUAN Hao, YU Hai-yang, GUI Shu-rui, et al. Explainability in graph neural networks: a taxonomic survey[J]. ArXiv Preprint, 2020, DOI: arXiv: 2012.15445.
[116] ZHANG Yuan, CHENG Qi-xiu, LIU Yang, et al. Full-scale spatio-temporal traffic flow estimation for city-wide networks: a transfer learning based approach[J]. Transportmetrica B: Transport Dynamics, 2022, 11(1): 869-895.
[117] HOQUE J M, ERHARDT G D, SCHMITT D, et al. Estimating the uncertainty of traffic forecasts from their historical accuracy[J]. Transportation Research Part A: Policy and Practice, 2021, 147: 339-349.
[118] GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]∥ACM. International Conference on Machine Learning. New York: ACM, 2016: 1050-1059.
[119] LI Ming-xi, TANG Yi-hong, MA Wei. Few-sample traffic prediction with graph networks using locale as relational inductive biases[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 1894-1908.
[120] QI Yu-xin, WU Jun, BASHIR A K, et al. Privacy-preserving cross-area traffic forecasting in ITS: a transferable spatial-temporal graph neural network approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 1-14.