[1] 彭其渊,李建光,杨宇翔,等.高速铁路建设对我国铁路运输的影响[J].西南交通大学学报,2016,51(3):525-533.
PENG Qi-yuan, LI Jian-guang, YANG Yu-xiang, et al. Influences of high-speed railway construction on railway transportation of China[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 525-533.(in Chinese)
[2] 贾利民,秦 勇,李 平.新一代轨道智能运输系统总体框架与关键技术[J].中国铁路,2015(4):14-19,60.
JIA Li-min, QIN Yong, LI Ping. The overall framework and key technologies of a new generation of rail intelligent transportation system[J]. China Railways, 2015(4): 14-19, 60.(in Chinese)
[3] 白彦超,安 超,李明高,等.CRH3型动车组武广客运专线服役性能跟踪研究[J].铁道机车与动车,2018(1):37-40,43.
BAI Yan-chao, AN Chao, LI Ming-gao, et al. Tracking research on service performance of CRH3 EMU in Wuhan-Guangzhou Passenger Dedicated Line[J]. Railway Locomotive and Motor Car, 2018(1): 37-40, 43.(in Chinese)
[4] 田永洙,沙 淼,史学玲,等.动车组牵引系统服役安全性评估方法与标准研究[J].铁道车辆,2015,53(3):21-24.
TIAN Yong-zhu, SHA Miao, SHI Xue-ling, et al. The safety evaluation method for service of traction system on multiple units and research on standards[J]. Rolling Stock, 2015, 53(3): 21-24.(in Chinese)
[5] 吴萌岭,王孝延,严凯军.微机控制直通电空制动系统的FMEA和FTA分析[J].机车电传动,2008(1):32-36.
WU Meng-ling, WANG Xiao-yan, YAN Kai-jun. Analysis by FMEA and FTA method of micro-computer controlled directacting electro-pneumatic braking system[J]. Electric Drive for Locomotives, 2008(1): 32-36.(in Chinese)
[6] 战成一,程光华,王孝延,等.微机控制直通电空制动系统用阀试验研究[J].城市轨道交通研究,2008,11(3):30-34.
ZHAN Cheng-yi, CHENG Guang-hua, WANG Xiao-yan, et al. A test of valves in micro-computer controlled braking system[J]. Urban Mass Transit, 2008, 11(3): 30-34.(in Chinese)
[7] PERIS E, GOIKOETXEA J. Roll2Rail: new dependable
rolling stock for a more sustainable, intelligent and comfortable rail transport in Europe[J]. Transportation Research Procedia, 2016, 14: 567-574.
[8] 缪炳荣,张卫华,池茂儒,等.下一代高速列车关键技术特征分析及展望[J].铁道学报,2019,41(3):58-70.
MIAO Bing-rong, ZHANG Wei-hua, CHI Mao-ru, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70.(in Chinese)
[9] 李小军,刘宗祝,张 雷,等.智能化高速列车方案设计与研究[C]∥中国智能交通协会.第八届中国智能交通年会优秀论文集——轨道交通.北京:电子工业出版社,2013:455-460.
LI Xiao-jun, LIU Zong-zhu, ZHANG Lei, et al. Scheme design and research of intelligent high-speed train[C]∥China Intelligent Transportation Association. Proceedings of the 8th China Intelligent Transportation Annual Conference—Rail Transit. Beijing: Publishing House of Electronics Industry, 2013: 455-460.(in Chinese)
[10] HALTUF M. Shift2Rail JU from member state's point of view[J]. Transportation Research Procedia, 2016, 14: 1819-1828.
[11] 吴萌岭,马天和,田 春,等.列车制动技术发展趋势探讨[J].中国铁道科学,2019,40(1):134-144.
WU Meng-ling, MA Tian-he, TIAN Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144.(in Chinese)
[12] 吴萌岭,周嘉俊,田 春,等.轨道交通制动系统创新技术[J].现代城市轨道交通,2019(7):30-35.
WU Meng-ling, ZHOU Jia-jun, TIAN Chun, et al. Innovative technology of rail transit braking system[J]. Modern Urban Transit, 2019(7): 30-35.(in Chinese)
[13] 刘豫湘,方长征,万建兵.列车制动系统技术现状及发展趋势[J].电力机车与城轨车辆,2014,37(5):1-4.
LIU Yu-xiang, FANG Chang-zheng, WAN Jian-bing. Technology status and development trend of train braking system[J]. Electric Locomotives and Mass Transit Vehicles, 2014, 37(5): 1-4.(in Chinese)
[14] 吴萌岭,程光华,王孝延,等.列车制动减速度控制问题的探讨[J].铁道学报,2009,31(1):94-97.
WU Meng-ling, CHENG Guang-hua, WANG Xiao-yan, et al. Discussion of braking deceleration control of railway vehicles[J]. Journal of the China Railway Society, 2009, 31(1): 94-97.(in Chinese)
[15] ISHIZAKA K, LEWIS S R, LEWIS R. The low adhesion problem due to leaf contamination in the wheel/rail contact: bonding and low adhesion mechanisms[J]. Wear, 2017, 378/379: 183-197.
[16] WHITE B T, NILSSON R, OLOFSSON U, et al. Effect of the presence of moisture at the wheel-rail interface during dew and damp conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(4): 979-989.
[17] 戚 壮,李 芾,丁军君.货车极限黏着制动优化方法[J].交通运输工程学报,2012,12(6):35-40,54.
QI Zhuang, LI Fu, DING Jun-jun. Braking optimization method of wagon under limit adhesion[J]. Journal of Traffic and Transportation Engineering, 2012, 12(6): 35-40, 54.(in Chinese)
[18] WU Bing, AN Bo-yang, WEN Ze-feng, et al. Wheel-rail low adhesion issues and its effect on wheel-rail material damage at high speed under different interfacial contaminations[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(15): 5477-5490.
[19] 罗 仁,曾 京.铁道车辆防滑控制仿真[J].机械工程学报,2008,44(3):29-34.
LUO Ren, ZENG Jing. Anti-sliding control simulation of railway vehicle braking[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 29-34.(in Chinese)
[20] 李江红,马 健,彭辉水.机车粘着控制的基本原理和方法[J].机车电传动,2002(6):4-8.
LI Jiang-hong, MA Jian, PENG Hui-shui. Basic principle and methods of adhesion control of locomotive[J]. Electric Drive for Locomotive, 2002(6): 4-8.(in Chinese)
[21] ZUO Jian-yong, CHEN Zhong-kai. Antiskid control of railway train braking based on adhesion creep behavior[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 543-549.
[22] 张鸿斐,王文健,申 鹏,等.油介质条件下轮轨黏着特性的试验研究[J].中国铁道科学,2012,33(4):65-68.
ZHANG Hong-fei, WANG Wen-jian, SHEN Peng, et al. Experimental study on wheel/rail adhesion characteristics under oil medium condition[J]. China Railway Science, 2012, 33(4): 65-68.
[23] 吴萌岭,周嘉俊,马天和,等.水介质下轮轨制动黏着试验研究[J].铁道机车车辆,2021,41(5):139-143.
WU Meng-ling, ZHOU Jia-jun, MA Tian-he, et al. Experimental study on wheel-rail brake adhesion under water condition[J]. Railway Locomotive and Car, 2021, 41(5): 139-143.
[24] ZHOU Jia-jun, WU Meng-ling, TIAN Chun, et al. Experimental investigation on wheel-rail adhesion characteristics under water and large sliding conditions[J]. Industrial Lubrication and Tribology, 2021, 73(2): 366-372.
[25] SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83.
[26] JIN Xue-song, WU Ping-bo, WEN Ze-feng. Effects of structure elastic deformations of wheelset and track on creep forces of wheel/rail in rolling contact[J]. Wear, 2002, 253(1/2): 247-256.
[27] SHRESTHA S, SPIRYAGIN M, WU Q. Friction condition characterization for rail vehicle advanced braking system[J]. Mechanical Systems and Signal Processing, 2019, 134: 106324.
[28] KIM Y M, KIM Y G, KIM S W, et al. Estimation of the adhesion force for a disc brake in a skid control condition[J]. International Journal of Automotive Technology, 2010, 11(5): 673-680.
[29] 顾博川.基于奇异值分解强跟踪滤波的机车黏着系数估计[J].铁道机车车辆,2011,31(4):26-30.
GU Bo-chuan. Locomotive adhesion coefficient estimation based on SVD strong track filter[J]. Railway Locomotive and Car, 2011, 31(4): 26-30.(in Chinese)
[30] 李宁洲,冯晓云.基于自适应子群协作QPSO算法的机车黏着智能模糊优化控制[J].中国铁道科学,2014,35(4):100-107.
LI Ning-zhou, FENG Xiao-yun. Intelligent fuzzy optimal control of locomotive adhesion based on adaptive multiple subgroup collaboration QPSO algorithm[J]. China Railway Science, 2014, 35(4): 100-107.(in Chinese)
[31] 吴萌岭,彭 顺,李小平.列车轮轨黏着力在线估测计算方法[J].同济大学学报(自然科学版),2018,46(3):354-358,388.
WU Meng-ling, PENG Shun, LI Xiao-ping. Online estimation algorithm of adhesive force for train wheeltrack[J]. Journal of Tongji University(Natural Science), 2018, 46(3): 354-358, 388.(in Chinese)
[32] 马天和,吴萌岭,田 春.基于黏着力观测器的列车空气制动防滑控制[J].同济大学学报(自然科学版),2020,48(11):1668-1675.
MA Tian-he, WU Meng-ling, TIAN Chun. Anti-skid control based on adhesion force observer for train pneumatic braking[J]. Journal of Tongji University(Natural Science), 2020, 48(11): 1668-1675.(in Chinese)
[33] 魏 伟,王 强.坡道上重载列车纵向冲动研究[J].振动与冲击,2014,33(5):143-148.
WEI Wei, WANG Qiang. Influence of train brake on longitudinal impulse of a heavy haul train passing through a ramp[J]. Journal of Vibration and Shock, 2014, 33(5): 143-148.(in Chinese)
[34] 魏 伟,胡 杨.列尾装置对重载列车纵向力的影响[J].交通运输工程学报,2012,12(5):43-49,63.
WEI Wei, HU Yang. Influence of train tail exhaust device on longitudinal force of train[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 43-49, 63.(in Chinese)
[35] 刘海东,苏 梅,彭宏勤,等.城市轨道交通列车制动问题研究[J].交通运输系统工程与信息,2011,11(6):93-97.
LIU Hai-dong, SU Mei, PENG Hong-qin, et al. Braking performances of urban rail trains[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(6): 93-97.
[36] 赵建飞.基于减速度控制的新一代地铁车辆制动控制技术[J].现代城市轨道交通,2019(11):39-46.
ZHAO Jian-fei. Braking control technology of new generation metro vehicle based on deceleration control[J]. Modern Urban Transit, 2019(11): 39-46.(in Chinese)
[37] 南京政信,彭惠民.具备减速度反馈功能的制动装置的开发[J].国外机车车辆工艺,2013(2):1-6.
NANJING Zheng-xin, PENG Hui-min. Development of a braking device equipped with deceleration feedback function[J]. Foreign Locomotive and Rolling Stock Technology, 2013(2): 1-6.(in Chinese)
[38] NANKYO M, ISHIHARA T, INOOKA H. Feedback control of braking deceleration on railway vehicle[J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(2): 244-250.
[39] NANKYO M, ISHIHARA T, INOOKA H. Feedback control of brake system on railway vehicle considering non-linear property and dead time[C]∥ASME. 2003 ASME International Mechanical Engineering Congress. New York: ASME, 2003: 99-104.
[40] 张梦楠,徐洪泽.基于Krasovskii泛函的城轨列车制动控制器设计[J].吉林大学学报(工学版),2015,45(1):104-111.
ZHANG Meng-nan, XU Hong-ze. Design of urban rail vehicle brake controller based on Krasovskii functionals[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1): 104-111.(in Chinese)
[41] 吴萌岭,罗卓军.基于自适应参数估计的列车制动减速度控制[J].铁道学报,2015,37(8):8-16.
WU Meng-ling, LUO Zhuo-jun. Study on train braking deceleration feedback control based on adaptive parameter estimation[J]. Journal of the China Railway Society, 2015, 37(8): 8-16.(in Chinese)
[42] 周嘉俊,吴萌岭,刘宇康,等.基于改进史密斯预估器的列车制动减速度控制研究[J].同济大学学报(自然科学版),2020,48(11):1657-1667.
ZHOU Jia-jun, WU Meng-ling, LIU Yu-kang, et al. Train braking deceleration control based on improved Smith estimator[J]. Journal of Tongji University(Natural Science), 2020, 48(11): 1657-1667.(in Chinese)
[43] 邓力铭.动车组故障模式统计分析[D].北京:中国铁道科学研究院,2015.
DENG Li-ming. Fault mode statistic and analysis of EMU[D]. Beijing: China Academy of Railway Sciences, 2015.(in Chinese)
[44] 辛志强,许文瑶,乔 峰.和谐号动车组中继阀故障筛查方法[J].铁道机车车辆,2017,37(3):94-96.
XIN Zhi-qiang, XU Wen-yao, QIAO Feng. Fault screening process for relay valve of CRH EMUs[J]. Railway Locomotive and Car, 2017, 37(3): 94-96.(in Chinese)
[45] 左建勇,韩 飞,胡 薇.地铁列车紧急制动故障特征再现仿真[J].交通运输工程学报,2015,15(5):44-49,56.
ZUO Jian-yong, HAN Fei, Hu Wei. Reproduction simulation of emergency brake fault feature for subway train[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 44-49, 56.(in Chinese)
[46] 周 斌,谢名源,吴克明.动车组维修体制现状分析及展望[J].机车电传动,2017(1):17-21.
ZHOU Bin, XIE Ming-yuan, WU Ke-ming. Analysis and prediction on the current situation of the repair class and repair system of electric multiple units(EMU)[J]. Electric Drive for Locomotives, 2017(1): 17-21.(in Chinese)
[47] 常振臣,张海峰.动车组PHM技术应用现状及展望[J].电力机车与城轨车辆,2016,39(1):1-4.
CHANG Zhen-chen, ZHANG Hai-feng. Application state and prospects of PHM technology on EMU[J]. Electric Locomotives and Mass Transit Vehicles, 2016, 39(1): 1-4.(in Chinese)
[48] 台秀华,郭天序,张颖佳,等.制动系统故障预测与健康管理技术研究[J].铁道车辆,2018,56(11):5-8.
TAI Xiu-hua, GUO Tian-xu, ZHANG Ying-jia, et al.Technical research on prognostics and health management for braking systems[J]. Rolling Stock, 2018, 56(11): 5-8.(in Chinese)
[49] 梁建英.高速列车智能诊断与故障预测技术研究[J].北京交通大学学报,2019,43(1):63-70.
LIANG Jian-ying. Research on intelligent diagnosis and fault prediction technology for high speed trains[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 63-70.(in Chinese)
[50] 刘志亮,潘 登,左明健,等.轨道车辆故障诊断研究进展[J].机械工程学报,2016,52(14):134-146.
LIU Zhi-liang, PAN Deng, ZUO Ming-jian, et al. A review on fault diagnosis for rail vehicles[J]. Journal of Mechanical Engineering, 2016, 52(14): 134-146.(in Chinese)
[51] 章 阳.动车组制动系统PHM方案研究[J].铁道机车车辆,2020,40(5):19-22.
ZHANG Yang. Research on PHM scheme of EMU brake system[J]. Railway Locomotive and Car, 2020, 40(5): 19-22.(in Chinese)
[52] 刘元清,耿晓峰,祁 成.城市轨道交通制动系统PHM技术研究与应用[J].现代城市轨道交通,2019(9):24-28.
LIU Yuan-qing, GENG Xiao-feng, QI Cheng. Research and application of braking system with PHM technology in urban rail transit[J]. Modern Urban Transit, 2019(9): 24-28.(in Chinese)
[53] 高殿柱,张石峰,刘伟荣.机车制动系统可预测维修关键技术与系统实现[J].电力机车与城轨车辆,2018,41(2):1-6.
GAO Dian-zhu, ZHANG Shi-feng, LIU Wei-rong. Key technologies and system implementation of predictable maintenance of locomotive braking system[J]. Electric Locomotives and Mass Transit Vehicles, 2018, 41(2): 1-6.(in Chinese)
[54] 左建勇,刘寅虎,丁景贤,等.高速列车制动系统故障识别与诊断维护[J].铁道机车车辆,2021,41(5):156-162.
ZUO Jian-yong, LIU Yin-hu, DING Jing-xian, et al. Fault identification diagnosis and maintenance for high-speed train braking system[J]. Railway Locomotive and Car, 2021, 41(5): 156-162.
[55] 高 敏,王雪梅,倪文波.基于S3C2410X的车辆制动监测装置研制[J].中国测试技术,2007,33(5):142-144.
GAO Min, WANG Xue-mei, NI Wen-bo. Study on vehicle braking monitor device based on S3C2410X[J]. China Measurement Technology, 2007, 33(5): 142-144.(in Chinese)
[56] 李万新,章 阳,林荣文,等.和谐号动车组制动系统故障诊断及安全措施[J].铁道机车车辆,2011,31(5):39-42.
LI Wan-xin, ZHANG Yang, LIN Rong-wen, et al. Fault diagnosis and safety measures of EMU braking system[J]. Railway Locomotive and Car, 2011, 31(5): 39-42.(in Chinese)
[57] 张永春.机车制动系统实时监测与故障诊断专家系统[J].计算机测量与控制,2013,21(10):2615-2617,2620.
ZHANG Yong-chun. Real-time monitoring and fault diagnosis expert system for locomotive braking system[J]. Computer Measurement and Control, 2013, 21(10): 2615-2617, 2620.(in Chinese)
[58] 阚佳钰.基于矢量量化的列车闸片温度状态监测方法研究[D].北京:北京交通大学,2015.
KAN Jia-yu. Research on the methods of condition monitoring based on vector quantization for train brake pad temperature[D]. Beijing: Beijing Jiaotong University, 2015.(in Chinese)
[59] ZUO Jian-yong, DING Jing-xian, HU Wei, et al. Performance degradation monitoring based on data fusion method for in-service train pneumatic brake system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(6): 1924-1938.
[60] 朱建渠,金炜东,郑 高,等.基于多源信息的高速列车走行部故障识别方法[J].振动与冲击,2014,33(21):183-188.
ZHU Jian-qu, JIN Wei-dong, ZHENG Gao, et al. High-speed train running gear fault recognition based on information fusion of multi-source[J]. Journal of Vibration and Shock, 2014, 33(21): 183-188.(in Chinese)
[61] 周东华,刘 洋,何 潇.闭环系统故障诊断技术综述[J].自动化学报,2013,39(11):1933-1943.
ZHOU Dong-hua, LIU Yang, HE Xiao. Review on fault diagnosis techniques for closed-loop systems[J]. Acta Automatica Sinica, 2013, 39(11): 1933-1943.(in Chinese)
[62] ZUO Jian-yong, CHEN Zhong-kai. Sensor configuration and test for fault diagnoses of subway braking system based on signed digraph method[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 475-482.
[63] 田静宜,杨 业,杨雪峰,等.高速列车智能化故障诊断方法[J].化工自动化及仪表,2013,40(4):531-533.
TIAN Jing-yi, YANG Ye, YANG Xue-feng, et al. Intelligent fault diagnosis method for high-speed trains[J]. Control and Instruments in Chemical Industry, 2013, 40(4): 531-533.(in Chinese)
[64] 牟增旭.动车组制动状态监测和故障诊断系统软件研究[D].成都:西南交通大学,2013.
MOU Zeng-xu. Software design of condition monitoring and fault diagnosis for EMUs brake system[D]. Chengdu: Southwest Jiaotong University, 2013.(in Chinese)
[65] 刘德东.城轨车辆制动系统的监测与故障诊断系统研究[D].北京:北京建筑大学,2014.
LIU De-dong. Research on the monitoring and fault diagnosis system of urban rail vehicle braking system[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2014.(in Chinese)
[66] 张 涛.CCBII制动机综合诊断装置的研究[J].电气技术,2009(4):61-65.
ZHANG Tao. CCBII brake based on multi-hierarchy fuzzy evaluation[J]. Electrical Engineering, 2009(4): 61-65.(in Chinese)
[67] 丁国君,王立德,申 萍,等.基于EEMD能量熵和LSSVM
的传感器故障诊断[J].传感器与微系统,2013,32(7):22-25.
DING Guo-jun, WANG Li-de, SHEN Ping, et al. Sensor fault diagnosis based on EEMD energy entropy and LSSVM[J]. Transducer and Microsystem Technologies, 2013, 32(7): 22-25.(in Chinese)
[68] LIU J, LI Y F, ZIO E. A SVM framework for fault detection of the braking system in a high speed train[J]. Mechanical Systems and Signal Processing, 2017, 87: 401-409.
[69] LIU J, ZIO E. A scalable fuzzy support vector machine for fault detection in transportation systems[J]. Expert Systems With Applications, 2018, 102: 36-43.
[70] ZUO Jian-yong, DING Jing-xian, FENG Fu-ren. Latent leakage fault identification and diagnosis based on multi-source information fusion method for key pneumatic units in Chinese standard electric multiple units(EMU)braking system[J]. Applied Sciences, 2019, 9(2): 300.
[71] 裴 迪.基于贝叶斯网络的货车空气制动系统故障诊断研究[D].北京:北京交通大学,2018.
PEI Di. Research on fault diagnosis of railway wagon air brake system based on Bayesian network[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)
[72] 严书荣.列车制动故障诊断专家系统关键技术研究及应用[D].大连:大连交通大学,2011.
YAN Shu-rong. Research and application on key technologies of fault diagnosis expert system for train brake[D]. Dalian: Dalian Jiaotong University, 2011.(in Chinese)
[73] 侯文明.HXD1型机车制动系统故障在线诊断技术的研究与应用[D]. 长沙:中南大学,2010.
HOU Wen-ming. Research and application of fault online diagnosis technology for brake system of HXD1 locomotive[D]. Changsha: Central South University, 2010.(in Chinese)
[74] NIU Gang, XIONG Liu-jing, QIN Xiao-xiao, et al. Fault
detection isolation and diagnosis of multi-axle speed sensors for high-speed trains[J]. Mechanical Systems and Signal Processing, 2019, 131: 183-198.
[75] 牛 刚,曹雪杰,秦肖肖.高速列车双通道速度传感器故障检测与隔离研究[J].仪器仪表学报,2019,40(1):158-165.
NIU Gang, CAO Xue-jie, QIN Xiao-xiao. Research on fault detection and isolation of dual channel speed sensor for high-speed train[J]. Chinese Journal of Scientific Instrument, 2019, 40(1): 158-165.(in Chinese)
[76] 鲁进军,吴萌岭,牛 刚.轨道交通制动系统速度传感器的故障诊断方法研究[J].铁道学报,2021,43(1):85-93.
LU Jin-jun, WU Meng-ling, NIU Gang. Research on fault diagnosis method of speed sensor for brake system of rail transit vehicles[J]. Journal of the China Railway Society, 2021, 43(1): 85-93.(in Chinese)
[77] ZHOU Dong-hua, JI Hong-quan, HE Xiao, et al. Fault detection and isolation of the brake cylinder system for electric multiple units[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5): 1744-1757.
[78] SEO B, JO S H, OH H, et al. Solenoid valve diagnosis for railway braking systems with embedded sensor signals and physical interpretation[C]∥Prognostics and Health Management Society. 2016 Annual Conference of the Prognostics and Health Management Society. New York: Prognostics and Health Management Society, 2016: 337-343.
[79] AN D, KIM N H, CHOI J H. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews[J]. Reliability Engineering and System Safety, 2015, 133: 223-236.
[80] BARALDI P, CADINI F, MANGILI F, et al. Model-based and data-driven prognostics under different available information[J]. Probabilistic Engineering Mechanics, 2013, 32: 66-79.
[81] LEI Ya-guo, LI Nai-peng, GONTARZ S, et al. A model-
based method for remaining useful life prediction of machinery[J]. IEEE Transactions on Reliability, 2016, 65(3): 1314-1326.
[82] DAIGLE M J, GOEBEL K. A model-based prognostics approach applied to pneumatic valves[J]. International Journal of Prognostics and Health Management, 2011, 2(2): 1-16.
[83] 高泽海,马存宝,宋 东.飞机燃油供油系统性能退化与故障预测[J].西北工业大学学报,2015,33(2):209-215.
GAO Ze-hai, MA Cun-bao, SONG Dong. Aircraft fuel feeding system performance degradation and failure prediction[J]. Journal of Northwestern Polytechnical University, 2015, 33(2): 209-215.(in Chinese)
[84] NIU Gang, HUANG Xiao-fan. Failure prognostics of locomotive electro-pneumatic brake based on bond graph modeling[J]. IEEE Access, 2017, 5: 15030-15039.
[85] LUO Jian-hui, PATTIPATI K R, QIAO Liu, et al. Model-based prognostic techniques applied to a suspension system[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2008, 38(5): 1156-1168.
[86] 赵申坤,姜 潮,龙湘云.一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J].机械工程学报,2018,54(12):115-124.
ZHAO Shen-kun, JIANG Chao, LONG Xiang-yun. Remaining useful life estimation of mechanical systems based on the data-driven method and Bayesian theory[J]. Journal of Mechanical Engineering, 2018, 54(12): 115-124.(in Chinese)
[87] 申中杰,陈雪峰,何正嘉,等.基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测[J].机械工程学报,2013,49(2):183-189.
SHEN Zhong-jie, CHEN Xue-feng, HE Zheng-jia, et al. Remaining life predictions of rolling bearing based on relative features and multivariable support vector machine[J]. Journal of Mechanical Engineering, 2013, 49(2): 183-189.
[88] YOU G W, PARK S, OH D. Real-time state-of-health estimation for electric vehicle batteries: a data-driven approach[J]. Applied Energy, 2016, 176: 92-103.
[89] ZUO Jian-yong, FENG Fu-ren, HE Yi-xin. Research and
application of train online health status detection based on feedforward neural network[J]. Journal of Physics: Conference Series, 2021, 1828(1): 012034.
[90] ZUO Jian-yong, ZHAO Tie-feng, WANG Bing-zheng, et al. Analysis of service condition and influence of metro brake system based on stream data processing method[C]∥ASME. Proceedings of the 2018 Joint Rail Conference. New York: ASME, 2018: 1-4.