|Table of Contents|

Research progress on intelligent control and maintenance technology of railway vehicle braking system(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2021年06期
Page:
50-62
Research Field:
综述
Publishing date:

Info

Title:
Research progress on intelligent control and maintenance technology of railway vehicle braking system
Author(s):
ZUO Jian-yong DING Jing-xian
(Institute of Rail Transit, Tongji University, Shanghai 201804, China)
Keywords:
railway vehicle braking system intelligent control intelligent maintenance nonlinearity uncertainty
PACS:
U270.35
DOI:
10.19818/j.cnki.1671-1637.2021.06.004
Abstract:
Focusing on the microcomputer-controlled direct electro-pneumatic braking system commonly used in railway vehicle, the structural composition, working principle, and control principle of the braking system were introduced, the technical characteristics of the braking system were analyzed, and the technical development trend of the intelligent braking system was summarized and discussed. The research status and existing problems of the braking system were reviewed from the two aspects of intelligent control and intelligent maintenance. Research result shows that the braking system of the railway vehicle is a complex mechanic-electric-pneumatic(hydraulic)coupled dynamic time-varying nonlinear control system, and its service process and failure behavior have the characteristics of uncertainty, fuzziness, and small samples. In terms of braking system control technology, compared with the theoretical braking force control, the two braking control modes of speed adhesion control and deceleration control have improved control effects when dealing with external interference. Aiming at uncertain factors such as external interference, performance degradation, or latent faults in the control of the braking system, an autonomous intelligent control based on parameter identification and closed-loop feedback is the development trend of the intelligent control technology of the braking system. The core goal is to realize the self-adaptation of external interference, self-maintenance of performance degradation, and self-adjustment of latent faults. With respect to braking system maintenance technology, the operation and maintenance of the braking system mainly involve condition monitoring and fault diagnosis, and few studies exist on fault prognosis and condition assessment. Making full use of the service status information of the braking system and strengthening the research on the service behavior and evolution law of the braking system under the coupled effect of multi-source factors are the development trend of the intelligent maintenance technology of the braking system. Further research should be conducted on service performance consistency analysis and evaluation, sensor layout optimization, and remaining useful life prediction methods of the braking system. 6 figs, 90 refs.

References:

[1] 彭其渊,李建光,杨宇翔,等.高速铁路建设对我国铁路运输的影响[J].西南交通大学学报,2016,51(3):525-533.
PENG Qi-yuan, LI Jian-guang, YANG Yu-xiang, et al. Influences of high-speed railway construction on railway transportation of China[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 525-533.(in Chinese)
[2] 贾利民,秦 勇,李 平.新一代轨道智能运输系统总体框架与关键技术[J].中国铁路,2015(4):14-19,60.
JIA Li-min, QIN Yong, LI Ping. The overall framework and key technologies of a new generation of rail intelligent transportation system[J]. China Railways, 2015(4): 14-19, 60.(in Chinese)
[3] 白彦超,安 超,李明高,等.CRH3型动车组武广客运专线服役性能跟踪研究[J].铁道机车与动车,2018(1):37-40,43.
BAI Yan-chao, AN Chao, LI Ming-gao, et al. Tracking research on service performance of CRH3 EMU in Wuhan-Guangzhou Passenger Dedicated Line[J]. Railway Locomotive and Motor Car, 2018(1): 37-40, 43.(in Chinese)
[4] 田永洙,沙 淼,史学玲,等.动车组牵引系统服役安全性评估方法与标准研究[J].铁道车辆,2015,53(3):21-24.
TIAN Yong-zhu, SHA Miao, SHI Xue-ling, et al. The safety evaluation method for service of traction system on multiple units and research on standards[J]. Rolling Stock, 2015, 53(3): 21-24.(in Chinese)
[5] 吴萌岭,王孝延,严凯军.微机控制直通电空制动系统的FMEA和FTA分析[J].机车电传动,2008(1):32-36.
WU Meng-ling, WANG Xiao-yan, YAN Kai-jun. Analysis by FMEA and FTA method of micro-computer controlled directacting electro-pneumatic braking system[J]. Electric Drive for Locomotives, 2008(1): 32-36.(in Chinese)
[6] 战成一,程光华,王孝延,等.微机控制直通电空制动系统用阀试验研究[J].城市轨道交通研究,2008,11(3):30-34.
ZHAN Cheng-yi, CHENG Guang-hua, WANG Xiao-yan, et al. A test of valves in micro-computer controlled braking system[J]. Urban Mass Transit, 2008, 11(3): 30-34.(in Chinese)
[7] PERIS E, GOIKOETXEA J. Roll2Rail: new dependable
rolling stock for a more sustainable, intelligent and comfortable rail transport in Europe[J]. Transportation Research Procedia, 2016, 14: 567-574.
[8] 缪炳荣,张卫华,池茂儒,等.下一代高速列车关键技术特征分析及展望[J].铁道学报,2019,41(3):58-70.
MIAO Bing-rong, ZHANG Wei-hua, CHI Mao-ru, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70.(in Chinese)
[9] 李小军,刘宗祝,张 雷,等.智能化高速列车方案设计与研究[C]∥中国智能交通协会.第八届中国智能交通年会优秀论文集——轨道交通.北京:电子工业出版社,2013:455-460.
LI Xiao-jun, LIU Zong-zhu, ZHANG Lei, et al. Scheme design and research of intelligent high-speed train[C]∥China Intelligent Transportation Association. Proceedings of the 8th China Intelligent Transportation Annual Conference—Rail Transit. Beijing: Publishing House of Electronics Industry, 2013: 455-460.(in Chinese)
[10] HALTUF M. Shift2Rail JU from member state's point of view[J]. Transportation Research Procedia, 2016, 14: 1819-1828.
[11] 吴萌岭,马天和,田 春,等.列车制动技术发展趋势探讨[J].中国铁道科学,2019,40(1):134-144.
WU Meng-ling, MA Tian-he, TIAN Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144.(in Chinese)
[12] 吴萌岭,周嘉俊,田 春,等.轨道交通制动系统创新技术[J].现代城市轨道交通,2019(7):30-35.
WU Meng-ling, ZHOU Jia-jun, TIAN Chun, et al. Innovative technology of rail transit braking system[J]. Modern Urban Transit, 2019(7): 30-35.(in Chinese)
[13] 刘豫湘,方长征,万建兵.列车制动系统技术现状及发展趋势[J].电力机车与城轨车辆,2014,37(5):1-4.
LIU Yu-xiang, FANG Chang-zheng, WAN Jian-bing. Technology status and development trend of train braking system[J]. Electric Locomotives and Mass Transit Vehicles, 2014, 37(5): 1-4.(in Chinese)
[14] 吴萌岭,程光华,王孝延,等.列车制动减速度控制问题的探讨[J].铁道学报,2009,31(1):94-97.
WU Meng-ling, CHENG Guang-hua, WANG Xiao-yan, et al. Discussion of braking deceleration control of railway vehicles[J]. Journal of the China Railway Society, 2009, 31(1): 94-97.(in Chinese)
[15] ISHIZAKA K, LEWIS S R, LEWIS R. The low adhesion problem due to leaf contamination in the wheel/rail contact: bonding and low adhesion mechanisms[J]. Wear, 2017, 378/379: 183-197.
[16] WHITE B T, NILSSON R, OLOFSSON U, et al. Effect of the presence of moisture at the wheel-rail interface during dew and damp conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(4): 979-989.
[17] 戚 壮,李 芾,丁军君.货车极限黏着制动优化方法[J].交通运输工程学报,2012,12(6):35-40,54.
QI Zhuang, LI Fu, DING Jun-jun. Braking optimization method of wagon under limit adhesion[J]. Journal of Traffic and Transportation Engineering, 2012, 12(6): 35-40, 54.(in Chinese)
[18] WU Bing, AN Bo-yang, WEN Ze-feng, et al. Wheel-rail low adhesion issues and its effect on wheel-rail material damage at high speed under different interfacial contaminations[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(15): 5477-5490.
[19] 罗 仁,曾 京.铁道车辆防滑控制仿真[J].机械工程学报,2008,44(3):29-34.
LUO Ren, ZENG Jing. Anti-sliding control simulation of railway vehicle braking[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 29-34.(in Chinese)
[20] 李江红,马 健,彭辉水.机车粘着控制的基本原理和方法[J].机车电传动,2002(6):4-8.
LI Jiang-hong, MA Jian, PENG Hui-shui. Basic principle and methods of adhesion control of locomotive[J]. Electric Drive for Locomotive, 2002(6): 4-8.(in Chinese)
[21] ZUO Jian-yong, CHEN Zhong-kai. Antiskid control of railway train braking based on adhesion creep behavior[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 543-549.
[22] 张鸿斐,王文健,申 鹏,等.油介质条件下轮轨黏着特性的试验研究[J].中国铁道科学,2012,33(4):65-68.
ZHANG Hong-fei, WANG Wen-jian, SHEN Peng, et al. Experimental study on wheel/rail adhesion characteristics under oil medium condition[J]. China Railway Science, 2012, 33(4): 65-68.
[23] 吴萌岭,周嘉俊,马天和,等.水介质下轮轨制动黏着试验研究[J].铁道机车车辆,2021,41(5):139-143.
WU Meng-ling, ZHOU Jia-jun, MA Tian-he, et al. Experimental study on wheel-rail brake adhesion under water condition[J]. Railway Locomotive and Car, 2021, 41(5): 139-143.
[24] ZHOU Jia-jun, WU Meng-ling, TIAN Chun, et al. Experimental investigation on wheel-rail adhesion characteristics under water and large sliding conditions[J]. Industrial Lubrication and Tribology, 2021, 73(2): 366-372.
[25] SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83.
[26] JIN Xue-song, WU Ping-bo, WEN Ze-feng. Effects of structure elastic deformations of wheelset and track on creep forces of wheel/rail in rolling contact[J]. Wear, 2002, 253(1/2): 247-256.
[27] SHRESTHA S, SPIRYAGIN M, WU Q. Friction condition characterization for rail vehicle advanced braking system[J]. Mechanical Systems and Signal Processing, 2019, 134: 106324.
[28] KIM Y M, KIM Y G, KIM S W, et al. Estimation of the adhesion force for a disc brake in a skid control condition[J]. International Journal of Automotive Technology, 2010, 11(5): 673-680.
[29] 顾博川.基于奇异值分解强跟踪滤波的机车黏着系数估计[J].铁道机车车辆,2011,31(4):26-30.
GU Bo-chuan. Locomotive adhesion coefficient estimation based on SVD strong track filter[J]. Railway Locomotive and Car, 2011, 31(4): 26-30.(in Chinese)
[30] 李宁洲,冯晓云.基于自适应子群协作QPSO算法的机车黏着智能模糊优化控制[J].中国铁道科学,2014,35(4):100-107.
LI Ning-zhou, FENG Xiao-yun. Intelligent fuzzy optimal control of locomotive adhesion based on adaptive multiple subgroup collaboration QPSO algorithm[J]. China Railway Science, 2014, 35(4): 100-107.(in Chinese)
[31] 吴萌岭,彭 顺,李小平.列车轮轨黏着力在线估测计算方法[J].同济大学学报(自然科学版),2018,46(3):354-358,388.
WU Meng-ling, PENG Shun, LI Xiao-ping. Online estimation algorithm of adhesive force for train wheeltrack[J]. Journal of Tongji University(Natural Science), 2018, 46(3): 354-358, 388.(in Chinese)
[32] 马天和,吴萌岭,田 春.基于黏着力观测器的列车空气制动防滑控制[J].同济大学学报(自然科学版),2020,48(11):1668-1675.
MA Tian-he, WU Meng-ling, TIAN Chun. Anti-skid control based on adhesion force observer for train pneumatic braking[J]. Journal of Tongji University(Natural Science), 2020, 48(11): 1668-1675.(in Chinese)
[33] 魏 伟,王 强.坡道上重载列车纵向冲动研究[J].振动与冲击,2014,33(5):143-148.
WEI Wei, WANG Qiang. Influence of train brake on longitudinal impulse of a heavy haul train passing through a ramp[J]. Journal of Vibration and Shock, 2014, 33(5): 143-148.(in Chinese)
[34] 魏 伟,胡 杨.列尾装置对重载列车纵向力的影响[J].交通运输工程学报,2012,12(5):43-49,63.
WEI Wei, HU Yang. Influence of train tail exhaust device on longitudinal force of train[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 43-49, 63.(in Chinese)
[35] 刘海东,苏 梅,彭宏勤,等.城市轨道交通列车制动问题研究[J].交通运输系统工程与信息,2011,11(6):93-97.
LIU Hai-dong, SU Mei, PENG Hong-qin, et al. Braking performances of urban rail trains[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(6): 93-97.
[36] 赵建飞.基于减速度控制的新一代地铁车辆制动控制技术[J].现代城市轨道交通,2019(11):39-46.
ZHAO Jian-fei. Braking control technology of new generation metro vehicle based on deceleration control[J]. Modern Urban Transit, 2019(11): 39-46.(in Chinese)
[37] 南京政信,彭惠民.具备减速度反馈功能的制动装置的开发[J].国外机车车辆工艺,2013(2):1-6.
NANJING Zheng-xin, PENG Hui-min. Development of a braking device equipped with deceleration feedback function[J]. Foreign Locomotive and Rolling Stock Technology, 2013(2): 1-6.(in Chinese)
[38] NANKYO M, ISHIHARA T, INOOKA H. Feedback control of braking deceleration on railway vehicle[J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(2): 244-250.
[39] NANKYO M, ISHIHARA T, INOOKA H. Feedback control of brake system on railway vehicle considering non-linear property and dead time[C]∥ASME. 2003 ASME International Mechanical Engineering Congress. New York: ASME, 2003: 99-104.
[40] 张梦楠,徐洪泽.基于Krasovskii泛函的城轨列车制动控制器设计[J].吉林大学学报(工学版),2015,45(1):104-111.
ZHANG Meng-nan, XU Hong-ze. Design of urban rail vehicle brake controller based on Krasovskii functionals[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1): 104-111.(in Chinese)
[41] 吴萌岭,罗卓军.基于自适应参数估计的列车制动减速度控制[J].铁道学报,2015,37(8):8-16.
WU Meng-ling, LUO Zhuo-jun. Study on train braking deceleration feedback control based on adaptive parameter estimation[J]. Journal of the China Railway Society, 2015, 37(8): 8-16.(in Chinese)
[42] 周嘉俊,吴萌岭,刘宇康,等.基于改进史密斯预估器的列车制动减速度控制研究[J].同济大学学报(自然科学版),2020,48(11):1657-1667.
ZHOU Jia-jun, WU Meng-ling, LIU Yu-kang, et al. Train braking deceleration control based on improved Smith estimator[J]. Journal of Tongji University(Natural Science), 2020, 48(11): 1657-1667.(in Chinese)
[43] 邓力铭.动车组故障模式统计分析[D].北京:中国铁道科学研究院,2015.
DENG Li-ming. Fault mode statistic and analysis of EMU[D]. Beijing: China Academy of Railway Sciences, 2015.(in Chinese)
[44] 辛志强,许文瑶,乔 峰.和谐号动车组中继阀故障筛查方法[J].铁道机车车辆,2017,37(3):94-96.
XIN Zhi-qiang, XU Wen-yao, QIAO Feng. Fault screening process for relay valve of CRH EMUs[J]. Railway Locomotive and Car, 2017, 37(3): 94-96.(in Chinese)
[45] 左建勇,韩 飞,胡 薇.地铁列车紧急制动故障特征再现仿真[J].交通运输工程学报,2015,15(5):44-49,56.
ZUO Jian-yong, HAN Fei, Hu Wei. Reproduction simulation of emergency brake fault feature for subway train[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 44-49, 56.(in Chinese)
[46] 周 斌,谢名源,吴克明.动车组维修体制现状分析及展望[J].机车电传动,2017(1):17-21.
ZHOU Bin, XIE Ming-yuan, WU Ke-ming. Analysis and prediction on the current situation of the repair class and repair system of electric multiple units(EMU)[J]. Electric Drive for Locomotives, 2017(1): 17-21.(in Chinese)
[47] 常振臣,张海峰.动车组PHM技术应用现状及展望[J].电力机车与城轨车辆,2016,39(1):1-4.
CHANG Zhen-chen, ZHANG Hai-feng. Application state and prospects of PHM technology on EMU[J]. Electric Locomotives and Mass Transit Vehicles, 2016, 39(1): 1-4.(in Chinese)
[48] 台秀华,郭天序,张颖佳,等.制动系统故障预测与健康管理技术研究[J].铁道车辆,2018,56(11):5-8.
TAI Xiu-hua, GUO Tian-xu, ZHANG Ying-jia, et al.Technical research on prognostics and health management for braking systems[J]. Rolling Stock, 2018, 56(11): 5-8.(in Chinese)
[49] 梁建英.高速列车智能诊断与故障预测技术研究[J].北京交通大学学报,2019,43(1):63-70.
LIANG Jian-ying. Research on intelligent diagnosis and fault prediction technology for high speed trains[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 63-70.(in Chinese)
[50] 刘志亮,潘 登,左明健,等.轨道车辆故障诊断研究进展[J].机械工程学报,2016,52(14):134-146.
LIU Zhi-liang, PAN Deng, ZUO Ming-jian, et al. A review on fault diagnosis for rail vehicles[J]. Journal of Mechanical Engineering, 2016, 52(14): 134-146.(in Chinese)
[51] 章 阳.动车组制动系统PHM方案研究[J].铁道机车车辆,2020,40(5):19-22.
ZHANG Yang. Research on PHM scheme of EMU brake system[J]. Railway Locomotive and Car, 2020, 40(5): 19-22.(in Chinese)
[52] 刘元清,耿晓峰,祁 成.城市轨道交通制动系统PHM技术研究与应用[J].现代城市轨道交通,2019(9):24-28.
LIU Yuan-qing, GENG Xiao-feng, QI Cheng. Research and application of braking system with PHM technology in urban rail transit[J]. Modern Urban Transit, 2019(9): 24-28.(in Chinese)
[53] 高殿柱,张石峰,刘伟荣.机车制动系统可预测维修关键技术与系统实现[J].电力机车与城轨车辆,2018,41(2):1-6.
GAO Dian-zhu, ZHANG Shi-feng, LIU Wei-rong. Key technologies and system implementation of predictable maintenance of locomotive braking system[J]. Electric Locomotives and Mass Transit Vehicles, 2018, 41(2): 1-6.(in Chinese)
[54] 左建勇,刘寅虎,丁景贤,等.高速列车制动系统故障识别与诊断维护[J].铁道机车车辆,2021,41(5):156-162.
ZUO Jian-yong, LIU Yin-hu, DING Jing-xian, et al. Fault identification diagnosis and maintenance for high-speed train braking system[J]. Railway Locomotive and Car, 2021, 41(5): 156-162.
[55] 高 敏,王雪梅,倪文波.基于S3C2410X的车辆制动监测装置研制[J].中国测试技术,2007,33(5):142-144.
GAO Min, WANG Xue-mei, NI Wen-bo. Study on vehicle braking monitor device based on S3C2410X[J]. China Measurement Technology, 2007, 33(5): 142-144.(in Chinese)
[56] 李万新,章 阳,林荣文,等.和谐号动车组制动系统故障诊断及安全措施[J].铁道机车车辆,2011,31(5):39-42.
LI Wan-xin, ZHANG Yang, LIN Rong-wen, et al. Fault diagnosis and safety measures of EMU braking system[J]. Railway Locomotive and Car, 2011, 31(5): 39-42.(in Chinese)
[57] 张永春.机车制动系统实时监测与故障诊断专家系统[J].计算机测量与控制,2013,21(10):2615-2617,2620.
ZHANG Yong-chun. Real-time monitoring and fault diagnosis expert system for locomotive braking system[J]. Computer Measurement and Control, 2013, 21(10): 2615-2617, 2620.(in Chinese)
[58] 阚佳钰.基于矢量量化的列车闸片温度状态监测方法研究[D].北京:北京交通大学,2015.
KAN Jia-yu. Research on the methods of condition monitoring based on vector quantization for train brake pad temperature[D]. Beijing: Beijing Jiaotong University, 2015.(in Chinese)
[59] ZUO Jian-yong, DING Jing-xian, HU Wei, et al. Performance degradation monitoring based on data fusion method for in-service train pneumatic brake system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(6): 1924-1938.
[60] 朱建渠,金炜东,郑 高,等.基于多源信息的高速列车走行部故障识别方法[J].振动与冲击,2014,33(21):183-188.
ZHU Jian-qu, JIN Wei-dong, ZHENG Gao, et al. High-speed train running gear fault recognition based on information fusion of multi-source[J]. Journal of Vibration and Shock, 2014, 33(21): 183-188.(in Chinese)
[61] 周东华,刘 洋,何 潇.闭环系统故障诊断技术综述[J].自动化学报,2013,39(11):1933-1943.
ZHOU Dong-hua, LIU Yang, HE Xiao. Review on fault diagnosis techniques for closed-loop systems[J]. Acta Automatica Sinica, 2013, 39(11): 1933-1943.(in Chinese)
[62] ZUO Jian-yong, CHEN Zhong-kai. Sensor configuration and test for fault diagnoses of subway braking system based on signed digraph method[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 475-482.
[63] 田静宜,杨 业,杨雪峰,等.高速列车智能化故障诊断方法[J].化工自动化及仪表,2013,40(4):531-533.
TIAN Jing-yi, YANG Ye, YANG Xue-feng, et al. Intelligent fault diagnosis method for high-speed trains[J]. Control and Instruments in Chemical Industry, 2013, 40(4): 531-533.(in Chinese)
[64] 牟增旭.动车组制动状态监测和故障诊断系统软件研究[D].成都:西南交通大学,2013.
MOU Zeng-xu. Software design of condition monitoring and fault diagnosis for EMUs brake system[D]. Chengdu: Southwest Jiaotong University, 2013.(in Chinese)
[65] 刘德东.城轨车辆制动系统的监测与故障诊断系统研究[D].北京:北京建筑大学,2014.
LIU De-dong. Research on the monitoring and fault diagnosis system of urban rail vehicle braking system[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2014.(in Chinese)
[66] 张 涛.CCBII制动机综合诊断装置的研究[J].电气技术,2009(4):61-65.
ZHANG Tao. CCBII brake based on multi-hierarchy fuzzy evaluation[J]. Electrical Engineering, 2009(4): 61-65.(in Chinese)
[67] 丁国君,王立德,申 萍,等.基于EEMD能量熵和LSSVM
的传感器故障诊断[J].传感器与微系统,2013,32(7):22-25.
DING Guo-jun, WANG Li-de, SHEN Ping, et al. Sensor fault diagnosis based on EEMD energy entropy and LSSVM[J]. Transducer and Microsystem Technologies, 2013, 32(7): 22-25.(in Chinese)
[68] LIU J, LI Y F, ZIO E. A SVM framework for fault detection of the braking system in a high speed train[J]. Mechanical Systems and Signal Processing, 2017, 87: 401-409.
[69] LIU J, ZIO E. A scalable fuzzy support vector machine for fault detection in transportation systems[J]. Expert Systems With Applications, 2018, 102: 36-43.
[70] ZUO Jian-yong, DING Jing-xian, FENG Fu-ren. Latent leakage fault identification and diagnosis based on multi-source information fusion method for key pneumatic units in Chinese standard electric multiple units(EMU)braking system[J]. Applied Sciences, 2019, 9(2): 300.
[71] 裴 迪.基于贝叶斯网络的货车空气制动系统故障诊断研究[D].北京:北京交通大学,2018.
PEI Di. Research on fault diagnosis of railway wagon air brake system based on Bayesian network[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)
[72] 严书荣.列车制动故障诊断专家系统关键技术研究及应用[D].大连:大连交通大学,2011.
YAN Shu-rong. Research and application on key technologies of fault diagnosis expert system for train brake[D]. Dalian: Dalian Jiaotong University, 2011.(in Chinese)
[73] 侯文明.HXD1型机车制动系统故障在线诊断技术的研究与应用[D]. 长沙:中南大学,2010.
HOU Wen-ming. Research and application of fault online diagnosis technology for brake system of HXD1 locomotive[D]. Changsha: Central South University, 2010.(in Chinese)
[74] NIU Gang, XIONG Liu-jing, QIN Xiao-xiao, et al. Fault
detection isolation and diagnosis of multi-axle speed sensors for high-speed trains[J]. Mechanical Systems and Signal Processing, 2019, 131: 183-198.
[75] 牛 刚,曹雪杰,秦肖肖.高速列车双通道速度传感器故障检测与隔离研究[J].仪器仪表学报,2019,40(1):158-165.
NIU Gang, CAO Xue-jie, QIN Xiao-xiao. Research on fault detection and isolation of dual channel speed sensor for high-speed train[J]. Chinese Journal of Scientific Instrument, 2019, 40(1): 158-165.(in Chinese)
[76] 鲁进军,吴萌岭,牛 刚.轨道交通制动系统速度传感器的故障诊断方法研究[J].铁道学报,2021,43(1):85-93.
LU Jin-jun, WU Meng-ling, NIU Gang. Research on fault diagnosis method of speed sensor for brake system of rail transit vehicles[J]. Journal of the China Railway Society, 2021, 43(1): 85-93.(in Chinese)
[77] ZHOU Dong-hua, JI Hong-quan, HE Xiao, et al. Fault detection and isolation of the brake cylinder system for electric multiple units[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5): 1744-1757.
[78] SEO B, JO S H, OH H, et al. Solenoid valve diagnosis for railway braking systems with embedded sensor signals and physical interpretation[C]∥Prognostics and Health Management Society. 2016 Annual Conference of the Prognostics and Health Management Society. New York: Prognostics and Health Management Society, 2016: 337-343.
[79] AN D, KIM N H, CHOI J H. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews[J]. Reliability Engineering and System Safety, 2015, 133: 223-236.
[80] BARALDI P, CADINI F, MANGILI F, et al. Model-based and data-driven prognostics under different available information[J]. Probabilistic Engineering Mechanics, 2013, 32: 66-79.
[81] LEI Ya-guo, LI Nai-peng, GONTARZ S, et al. A model-
based method for remaining useful life prediction of machinery[J]. IEEE Transactions on Reliability, 2016, 65(3): 1314-1326.
[82] DAIGLE M J, GOEBEL K. A model-based prognostics approach applied to pneumatic valves[J]. International Journal of Prognostics and Health Management, 2011, 2(2): 1-16.
[83] 高泽海,马存宝,宋 东.飞机燃油供油系统性能退化与故障预测[J].西北工业大学学报,2015,33(2):209-215.
GAO Ze-hai, MA Cun-bao, SONG Dong. Aircraft fuel feeding system performance degradation and failure prediction[J]. Journal of Northwestern Polytechnical University, 2015, 33(2): 209-215.(in Chinese)
[84] NIU Gang, HUANG Xiao-fan. Failure prognostics of locomotive electro-pneumatic brake based on bond graph modeling[J]. IEEE Access, 2017, 5: 15030-15039.
[85] LUO Jian-hui, PATTIPATI K R, QIAO Liu, et al. Model-based prognostic techniques applied to a suspension system[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2008, 38(5): 1156-1168.
[86] 赵申坤,姜 潮,龙湘云.一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J].机械工程学报,2018,54(12):115-124.
ZHAO Shen-kun, JIANG Chao, LONG Xiang-yun. Remaining useful life estimation of mechanical systems based on the data-driven method and Bayesian theory[J]. Journal of Mechanical Engineering, 2018, 54(12): 115-124.(in Chinese)
[87] 申中杰,陈雪峰,何正嘉,等.基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测[J].机械工程学报,2013,49(2):183-189.
SHEN Zhong-jie, CHEN Xue-feng, HE Zheng-jia, et al. Remaining life predictions of rolling bearing based on relative features and multivariable support vector machine[J]. Journal of Mechanical Engineering, 2013, 49(2): 183-189.
[88] YOU G W, PARK S, OH D. Real-time state-of-health estimation for electric vehicle batteries: a data-driven approach[J]. Applied Energy, 2016, 176: 92-103.
[89] ZUO Jian-yong, FENG Fu-ren, HE Yi-xin. Research and
application of train online health status detection based on feedforward neural network[J]. Journal of Physics: Conference Series, 2021, 1828(1): 012034.
[90] ZUO Jian-yong, ZHAO Tie-feng, WANG Bing-zheng, et al. Analysis of service condition and influence of metro brake system based on stream data processing method[C]∥ASME. Proceedings of the 2018 Joint Rail Conference. New York: ASME, 2018: 1-4.

Memo

Memo:
-
Last Update: 2021-12-20