|Table of Contents|

Review on wheel-rail dynamic responses caused by wheel tread defects(PDF)


Research Field:
Publishing date:


Review on wheel-rail dynamic responses caused by wheel tread defects
(State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
vehicle engineering wheel-rail contact tread defects dynamic response and mechanism detection method prevention measure
The current research on wheel-rail relationship was summarized in three aspects, including rolling contact theories, experiments, and numerical simulations. The influence of dynamics mechanical properties of wheel/rail materials on wheel-rail rolling contact behavior was emphasized. The related results on the static and dynamic mechanical properties of wheel/rail materials and constitutive relationship were summarized. A systematical introduction was presented on the progress of research on wheel-rail dynamic responses caused by wheel flat, tread spalling, wheel polygonization, and other typical tread influences, mainly including the influence of wheel tread defects on wheel-rail rolling contact behavior and vehicle system dynamics, and the causation, influence rules and evolution mechanism of wheel tread defect. The influences of dynamic effects on high-speed wheel-rail rolling contact behavior was emphasized and the detection technologies and prevention measures of wheel tread defects were summarized. Analysis results suggest that the wheel tread defects significantly increase the wheel-rail impact force, resulting in damages of wheel-rail components and abnormal vibration of car body, which seriously affect the service life of vehicle-track components and vehicle dynamics performance, and even threaten the safety of train operation. The causes and mechanisms of wheel tread defects still need to be further explored, abnormal braking of vehicle and low adhesion state between wheel and rail will lead to wheel flat, characteristics of wheel/rail materials, wheel-rail contact load, wheelset resonance, performance of braking system and operation conditions/environment are the main factors leading to wheel tread spalling, wheel-axle resonance, wheel-rail friction vibration, wheel manufacturing and re-profiling are closely related to the formation of wheel polygonization. Improving the performance of wheel/rail materials, controlling the support stiffness/damping of track system and friction coefficients between wheel and rail are all effective measures to restrain wheel tread defects. 3 tabs, 19 figs, 209 refs.


[1] 张雪珊,肖新标,金学松.高速车轮椭圆化问题及其对车辆横向稳定性的影响[J].机械工程学报,2008,44(3):50-56.
ZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Influences of high speed railway wheels ovalization on vehicle lateral stability[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 50-56.(in Chinese)
[2] 刘逍远.铁路车轮非圆化对车辆一轨道系统动力学行为的影响[D].成都:西南交通大学,2012.
LIU Xiao-yuan. Influence of out-of-round railway wheel on vehicle-track system dynamic behavior[D]. Chengdu: Southwest Jiaotong University, 2012.(in Chinese)
[3] NIELSEN J C O, JOHANSSON A. Out-of-round railway
wheels—a literature survey[J]. Journal of Rail and Rapid Transit, 2000, 214: 79-91.
[4] TAO Gong-quan, WEN Ze-feng, JIN Xue-song, et al.
Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, DOI: 10.1007/s40534-020-00222-x.
[5] 闫子全,孙林林,肖俊恒,等.高速铁路公务工程前沿基础理论与科学问题—轮轨关系[J].铁道建筑,2018,58(11):13-19.
YAN Zi-quan, SUN Lin-lin, XIAO Jun-heng, et al. Cutting-edge theory and scientific problems of high speed railway maintenance engineering: wheel-rail interaction[J]. Railway Engineering, 2018, 58(11): 13-19.(in Chinese)
[6] HERTZ H. Ueber die Berührung fester elastischer Körper[J]. Journal Für Die Reine Und Angewandte Mathematik, 1882, 92: 156-171.
[7] KNOTHE K. History of wheel/rail contact mechanics: from Redtenbacher to Kalker[J]. Vehicle System Dynamics, 2008, 46(1/2): 9-26.
[8] AYASSE J B, CHOLLET H. Wheel-Rail Contact Handbook of Railway Vehicle Dynamics[M]. Boca Raton: FL CRC Press, 2006.
[9] KALKER J J. Survey of wheel-rail rolling contact theory[J]. Vehicle System Dynamics, 1979, 8(4): 317-358.
[10] CARTER F W. On the action of locomotive driving wheel[J]. Proceeding of Royal Society of London, 1926, 112(760): 151-157.
[11] PIOTROWSKI J, CHOLLET H. Wheel-rail contact models for vehicle system dynamics including multi-point contact[J]. Vehicle System Dynamics, 2005, 43(6/7): 455-483.
[12] JOHNSON K L. The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane[J]. Journal of Applied Mechanics, 1958, 25(3): 339-346.
[13] VERMEULEN P L, JOHNSON K L. Contact of non-spherical bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964(31): 338-340.
[14] 孔祥安,江晓禹,金学松.固体接触力学[M].北京:中国铁道出版社,1999.
KONG Xing-an, JIANG Xiao-yu, JIN Xue-song. Solid Contact Mechanics[M]. Beijing: China Railway Publishing House, 1999.(in Chinese)
[15] 金学松,张立民.轮轨蠕滑力分析计算中几种蠕滑动力模型的比较[J].铁道学报,1998,20(增):56-61.
JIN Xue-song, ZHANG Li-min. A comparison of important creep-force models in the analysis of wheel-rail rolling contact[J]. Journal of the China Railway Society,1998, 20(S): 56-61.(in Chinese)
[16] KALKER J J.On the rolling contact of two elastic bodies in the presence of dry friction[D]. Netherlands: Delft University of Technology, 1967.
[17] 金学松.轮轨蠕滑理论及其试验研究[D].成都:西南交通大学,1999.
JIN Xue-song. Study on creep theory of wheel and rail system and its experiment[D].Chengdu: Southwest Jiaotong University, 1999.(in Chinese)
[18] KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13.
[19] KALKER J J. Wheel-rail rolling contact theory[J]. Wear, 1991, 144(1): 243-261.
[20] VOLLEBREGT E, IWNICKI S, SHACKLETON P. Assessing the accuracy of different simplified frictional rolling contact algorithms[J]. Vehicle System Dynamics, 2012, 50(1): 1-17.
[21] SHEN Z Y, HERDRICK J K, ELKINS J A. A comparison of alternative creep-force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83.
[22] SHEN Zhi-yun, LI Zi-li. A fast non-steady state creep force model based on the simplified theory[J]. Wear, 1996, 191(1/2): 242-244.
[23] LI Zi-li. Wheel-rail rolling contact and its application to wear simulation[D]. Netherlands: Delft University of Technology, 2002.
[24] POLACH O. Fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 2000, 33(S1): 728-739.
[25] 金学松,张卫华.非赫兹接触轮轨力数表TPLR的研究[J].西南交通大学学报,1996,31(6):646-651.
JIN Xue-song, ZHANG Wei-hua. Development of wheel/rail non-Hertzian contact creep force table[J]. Journal of Southwest Jiaotong University,1996, 31(6): 646-651.(in Chinese)
[26] PASCAL J P. About multi-Hertzian-contact hypothesis and
equivalent conicity in the case of S1002 and UIC60 analytical wheel/rail profiles[J]. Vehicle System Dynamics, 1993, 22(2): 57-78.
[27] 丁军君.基于蠕滑机理的重载货车车轮磨耗研究[D].成都:西南交通大学,2012.
DING Jun-jun. Research on wheel wear of heavy haul freight car based on the creep mechanism[D].Chengdu: Southwest Jiaotong University, 2012.(in Chinese)
[28] PIOTROWSKI J, CHOLLET H. Wheel-rail contact models for vehicle system dynamics including multi-point contact[J]. Vehicle system dynamics, 2005, 43(6/7): 455-483.
[29] LINDER C H. Verschleiß von eisenbahnrädern mit
unrundheiten[D]. Zurich: Eidgenössische Technische Hochschule Zürich, 1997.
[30] PIOTROWSKI J, KIK W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[J]. Vehicle System Dynamics, 2008, 46(1/2): 27-48.
[31] LIU Bin-bin, BRUNI S, VOLLEBREGT E. A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw[J]. Vehicle System Dynamics, 2016, 54(9): 1226-1246.
[32] AYASSE J B, CHOLLET H. Determination of the wheel rail contact patch in semi-Hertzian conditions[J]. Vehicle System Dynamics, 2005, 43(3): 161-172.
[33] SICHANI M S, ENBLOM R, BERG M. A novel method to model wheel-rail normal contact in vehicle dynamics simulation[J]. Vehicle System Dynamics, 2014, 52(12): 1752-1764.
[34] SUN Yu, ZHAI Wan-ming, GUO Yu. A robust non-Hertzian contact method for wheel-rail normal contact analysis[J]. Vehicle System Dynamics, 2018, 56(12): 1899-1921.
[35] SICHANI M S, ENBLOM R, BERG M. An alternative to FASTSIM for tangential solution of the wheel-rail contact[J]. Vehicle System Dynamics, 2016, 54(6): 748-764.
[36] SICHANI M S, ENBLOM R, BERG M. A fast wheel-rail
contact model for application to damage analysis in vehicle dynamics simulation[J]. Wear, 2016, 366/367: 123-130.
[37] PIOTROWSKI J, LIU Bin-bin, BRUNI S. The Kalker book of tables for non-Hertzian contact of wheel and rail[J]. Vehicle System Dynamics, 2017, 55(6): 875-901.
[38] 汪登荣.新型轮轨关系试验台研究[D].成都:西南交通大学,2012.
WANG Deng-rong. Research on a new wheel and rail relationship test-rig[D].Chengdu: Southwest Jiaotong University, 2012.(in Chinese)
[39] 严隽耄,王开文,傅茂海.机车车辆轮-轮与轮-轨接触关系的比较[J].铁道学报,1994,16:17-23.
YAN Jun-mao, WANG Kai-wen, FU Mao-hai. A comparison of rail vehicle wheel-rail and wheel-roller contact relations[J]. Journal of the China Railway Society, 1994, 16: 17-23.(in Chinese)
[40] MATSUMOTO A, SATO Y, NAKATA M, et al. Wheel-rail contact mechanics at full scale on the test stand[J]. Wear, 1996, 191(1/2): 101-106.
[41] DOI H, MIYAMOTO T, NISHIYAMA Y, et al. A new experimental device to investigate creep forces between wheel and rail[J]. Wear, 2011, 271: 40-46.
[42] CHANG Chong-yi, CHEN Bo, CAI Yuan-wu, et al. An
experimental study of high speed wheel-rail adhesion characteristics in wet condition on full scale roller rig[J]. Wear, 2019, 440: 203092.
[43] BAEK K, KYOGOKU K, NAKAHARA T. An experimental investigation of transient traction characteristics in rolling-sliding wheel/rail contacts under dry-wet conditions[J]. Wear, 2007, 263: 169-179.
[44] ZHU Y, CHEN X, WANG W, et al. A study on iron oxides and surface roughness in dry and wet wheel-rail contacts[J]. Wear, 2015, 328: 241-248.
[45] CHEN H, BAN T, ISHIDA M, et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions[J]. Wear, 2008, 265(9/10): 1504-1511.
[46] EGANA J I, VINOLAS J, NEGRETE G N. Effect of liquid high positive friction(HPF)modifier on wheel-rail contact and rail corrugation[J]. Tribology International, 2005, 38(8): 769-774.
[47] NIELSEN J C O. High-frequency vertical wheel-rail contact forces-Validation of a prediction model by field testing[J]. Wear, 2008, 265(9/10): 1465-1471.
[48] YE Yun-guang, SHI Da-chuan, KRAUSE P, et al. Wheel flat can cause or exacerbate wheel polygonization[J]. Vehicle System Dynamics, 2020, 58(10): 1575-1604.
[49] JIN Xue-song, WU Lei, FANG Jian-ying, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system[J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834.
[50] QU Sheng, ZHU Bin, ZENG Jing, et al. Experimental
investigation for wheel polygonisation of high-speed trains[J]. Vehicle System Dynamics, 2020, DOI: 10.1080/00423114.2020.1772984.
[51] 宋志坤,岳仁法,胡晓依,等.车轮多边形对车辆振动及轮轨力的影响[J].北京交通大学学报,2017,41(6):88-93.
SONG Zhi-kun, YUE Ren-fa, HU Xiao-yi, et al. Influence of wheel polygon on vehicle vibration and wheel/rail force[J]. Journal of Beijing Jiaotong University, 2017, 41(6): 88-93.(in Chinese)
[52] 张浩然.车轮多边形对高速列车振动响应和构架疲劳寿命影响研究[D].北京:北京交通大学,2018.
ZHANG Hao-ran. Research on the effect of wheel polygon on vibration response and frame fatigue life of high-speed train[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)
[53] WEI Zi-long, SHEN Chen, LI Zi-li, et al. Wheel-rail impact at crossings: relating dynamic frictional contact to degradation[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 041016.
[54] 宋志坤,孙 琛,成 棣,等.车轮型面圆弧参数及其对轮轨接触和车辆动力学影响研究[J].中国铁道科学,2019,40(6):104-113.
SONG Zhi-kun, SUN Chen, CHENG Di, et al. Research on arc parameters of wheel profile and its influence on wheel-rail contact vehicle dynamics[J]. China Railway Science, 2019, 40(6): 104-113.(in Chinese)
co-simulation approach to the wheel-rail contact with flexible railway track[J]. Multibody System Dynamics, 2019, 45(2): 245-272.
[56] ZHAO Xin, LI Zi-li. The solution of frictional wheel-rail
rolling contact with a 3D transient finite element model: Validation and error analysis[J]. Wear, 2011, 271(1/2): 444-452.
[57] MAGEL E E, LIU Y. On some aspects of the wheel/rail
interaction[J]. Wear, 2014, 314(1/2): 132-139.
[58] WU Ya-ping, WEI Yun-peng, LIU Yang, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials[J]. Applied Thermal Engineering, 2017, 115: 455-462.
[59] 赵 鑫,温泽峰,王衡禹,等.三维高速轮轨瞬态滚动接触有限元模型及其应用[J].机械工程学报,2013,49(18):1-7.
ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7.(in Chinese)
[60] JING Lin, HAN Liang-liang. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress[J]. Vehicle System Dynamics, 2017, 55(12): 1946-1972.
[61] HAN Liang-liang, JING Lin, ZHAO Long-mao. Finite element analysis of the wheel-rail impact behavior induced by a wheel flat for high-speed trains: the influence of strain rate[J]. Journal of Rail and Rapid Transit, 2018, 232(4): 990-1004.
[62] LIU Kai, JING Lin. A finite element analysis-based study on the dynamic wheel-rail contact behavior caused by wheel polygonization[J]. Journal of Rail and Rapid Transit, 2020, 234(10): 1285-1298.
[63] 寇峻瑜,赵 鑫,张 鹏,等.高速滚滑下轮轨表层材料的应变率水平估计[J].工程力学, 2019, 36(4): 239-247.
KOU Jun-yu, ZHAO Xin, ZHANG Peng, et al. Estimation of strain rates for wheel-rail surface materials under high-speed rolling-sliding contact[J]. Engineering Mechanics, 2019, 36(4): 239-247.(in Chinese)
[64] AGLAN H A, LIU Z Y, HASSAN M F, et al. Mechanical
and fracture behavior of bainitic rail steel[J]. Journal of Materials Processing Technology, 2004, 151(1/2/3): 268-274.
[65] ZHANG M R, GU H C. Fracture toughness of nanostructured railway wheels[J]. Engineering Fracture Mechanics, 2008, 75(18): 5113-5121.
[66] 张青松,李国栋,戴光泽,等.1050车轮钢组织和力学性能各向异性的研究[J].中国材料进展,2017,36(6):461-466.
ZHANG Qing-song, LI Guo-dong, DAI Guang-ze, et al. Investigation on anisotropic microstructure and mechanical properties of 1050 wheel steel[J]. Materials China, 2017, 36(6): 461-466.(in Chinese)
[67] 王 强,赵永翔,王 欢.铁路D1车轮钢的疲劳可靠性寿命与强度的试验及表征[J].机械工程学报,2014,37(14):50-55.
WANG Qiang, ZHAO Yong-xiang, WANG Huan. Experiments and characteristic on the probabilistic fatigue lives and strengths of D1 railway wheel steel[J]. Journal of Mechanical Engineering, 2014, 37(14): 50-55.(in Chinese)
[68] 田 越,程育仁.U71Mn轨钢拉伸应力应变曲线的Ramberg-Osgood模型拟合[J].物理测试,1991(5):30-35.(in Chinese)
TIAN Yue, CHENG Yu-ren. Fitting of tensile stress-strain curves of U71Mn rail steel using the Ramberg-Osgood model[J]. Physics Examination and Testing, 1991(5):30-35.(in Chinese)
[69] 宿 皓,陈 林,郭飞翔,等.U75V重轨钢的疲劳寿命分析[J].内蒙古科技大学学报,2017,36(4):347-350.
SU Hao, CHEN Lin, GUO Fei-xiang, et al.Fatigue life analysis of U75V heavy rail steel[J]. Journal of Inner Mongolia University of Science and Technology, 2017, 36(4):347-350.(in Chinese)
[70] 徐 周,王德永,陈开来,等.微镁处理对车轮钢组织与性能的调控作用[J].钢铁研究学报,2018,30(8):633-641.
XU Zhou, WANG De-yong, CHEN Kai-lai, et al. Effect of magnesium addition on microstructure and mechanical properties in wheel steel[J]. Journal of Iron and Steel Research, 2018, 30(8): 633-641.(in Chinese)
[71] 龚 帅,任学冲,马英霞,等.热处理工艺对高速车轮钢显微组织和断裂韧性的影响[J].材料热处理学报,2015,36(4):150-155.
GONG Shuai, REN Xue-chong, MA Ying-xia, et al. Effect of heat-treatment on microstructure and fracture toughness of high-speed railway wheel steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(4): 150-155.(in Chinese)
[72] DHUA S K, RAY A, SEN S K, et al. Influence of
nonmetallic inclusion characteristics on the mechanical properties of rail steel[J]. Journal of Materials Engineering and Performance, 2000, 9(6): 700-709.
[73] 程育仁,彭 湘,侯炳麟,等.轨钢在冲击载荷作用下表面裂纹的扩展行为[J].铁道学报,1991,13(4):87-92.
CHENG Yu-ren, PENG Xiang, HOU Bing-lin, et al. The growth behavior of fatigue surface cracks in rail steel under an impact load[J]. Journal of the China Railway Society, 1991, 13(4): 87-92.(in Chinese)
Characterization of the compression properties of rail steels at high temperatures and strain rates[J]. Material Science and Engineering: A, 1991, 141(2): 247-260.
[75] 田 越,程育仁,刘学文.高应变率下U71Mn轨钢动态力学性能研究[J].中国铁道科学,1992,13(2):34-42.
TIAN Yue, CHENG Yu-ren, LIU Xue-wen. Studies on the dynamic behavior of U71Mn rail steel under high strain rates[J]. China Railway Science, 1992, 13(2): 34-42.(in Chinese)
[76] 汪振兴,田晓耕,干 聪,等.单轴压缩下U75V钢动态力学行为及其修正J-C本构模型[J].材料热处理学报,2019,40(7):156-164.
WANG Zhen-xing, TIAN Xiao-geng, GAN Cong, et al.Dynamic mechanical behavior of U75V steel under uniaxial compression and its modified J-C constitutive model[J]. Transactions of Materials and Heat Treatment, 2019, 40(7): 156-164.(in Chinese)
[77] LIU Pei-jie, QUAN Yan-ming, DING Guo. Dynamic mechanical characteristics and constitutive modeling of rail steel over a wide range of temperatures and strain rates[J]. Advances in Materials Science and Engineering, 2019, 2019: 6862391.
[78] JING Lin, HAN Liang-liang, ZHAO Long-mao, et al. The dynamic tensile behavior of railway wheel steel at high strain rates[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 4959-4966.
[79] JING Lin, SU Xing-ya, ZHAO Long-mao. The dynamic
compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range strain rates and temperatures[J]. Results in Physics, 2017, 7: 1452-1461.
[80] 韩亮亮,张 莹,敬 霖,等.不同应变速率下D1车轮钢的拉伸性能与断口形貌[J].机械工程材料,2016,40(11):16-21.
HAN Liang-liang, ZHANG Ying, JING Lin, et al. Tensile properties and fractography of D1 wheel steel at different strain rates[J]. Materials for Mechanical Engineering, 2016, 40(11): 16-21.(in Chinese)
[81] HAN Liang-liang, JING Lin, WEI Hua-cheng, et al.
Experimental characterization of the dynamic compressive properties of railway wheel steel[J]. Materials Science Forum, 2016, 867: 29-33.
[82] SU Xing-ya, ZHOU Lun, JING Lin. et al. Experimental
investigation and constitutive description of railway wheel/rail steels under medium-strain-rate tensile loading[J]. Journal of Materials Engineering and Performance, 2020, 29(3): 2015-2025.
[83] 苏兴亚.复杂载荷下高速轮/轨钢的动态力学行为与本构关系[D].成都:西南交通大学,2019.
SU Xing-ya. The dynamic mechanical behavior and constitutive relationship of high-speed wheel/rail steels under complex loadings[D]. Chengdu: Southwest Jiaotong University, 2019.(in Chinese)
[84] 任学冲,齐 冀,张 斌,等.温度及应变速率对高速车轮钢形变行为的影响[J].中国铁道科学,2015,36(3):88-93.
REN Xue-chong, QI Ji, ZHANG Bin, et al.Influence of temperature and strain rate on deformation behavior of high speed wheel steel[J]. China Railway Science, 2015, 36(3): 88-93.(in Chinese)
[85] 钱利锋,侯英玮.U75V钢流动应力的试验研究[J].锻压技术,2009,34(5):132-135.
QIAN Li-feng, HOU Ying-wei. Experimental research on flow stress of U75V steel[J]. Forging and Stamping Technology, 2009, 34(5): 132-135.(in Chinese)
[86] WANG Jian-jun, GUO Wei-guo, GAO Xiao-sheng, et al.
The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates[J]. International Journal of Plasticity, 2015, 65: 85-107.
[87] OLOFSSON U, SUNDYALL K. Influence of leaf, humidity and applied lubrication on friction in the wheel-rail contact: pin-on-disc experiments[J]. Journal of Rail and Rapid Transit, 2004, 218(3): 235-242.
[88] KUMAGAI N, ISHIKAWA H, HAGA K, et al. Factors of wheel flats occurrence and preventive measures[J]. Wear, 1991, 144(1): 277-287.
[89] 凌 亮,曹亚博,肖新标,等.车轮擦伤对高速轮轨接触行为的影响[J].铁道学报,2015,37(7):32-39.
LING Liang, CAO Ya-bo, XIAO Xin-biao, et al. Effect of wheel flats on the high-speed wheel-rail contact behavior[J]. Journal of the China Railway Society, 2015, 37(7): 32-39.(in Chinese)
[90] STEENBERGEN M J M M. The role of the contact
geometry in wheel-rail impact due to wheel flats: Part Ⅱ[J]. Vehicle System Dynamics, 2008, 46(8): 713-717.
[91] AAR. Effect of flat wheels on track and equipment[R]. Washington DC: AAR, 1952.
[92] JOHANSSON A, NIELSEN J C O. Out-of-round railway
wheels-wheel rail contact forces and track response derived from field tests and numerical simulations[J]. Journal of Rail and Rapid Transit, 2003, 217(2): 135-146.
[93] NEWTON S G, CLARK R A. An investigation into the dynamic effects on the track of wheel flats on railway vehicles[J]. Journal of Mechanical Engineering Science, 1979, 21(4): 287-297.
[94] FERMER M, NIELSEN J C O. Wheel/rail contact forces for flexible versus solid wheels due to tread irregularities[J]. Vehicle System Dynamics, 1994, 23(1): 142-157.
[95] CHEN Y Z, HE C G, ZHAO X J, et al. The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel[J]. Engineering Failure Analysis, 2018, 93: 183-199.
[96] JERJEUS J, ODENMARCK C, LUNDEN R, et al. Full-scale railway wheel flat experiments[J]. Journal of Rail and Rapid Transit, 1998, 213(1): 1-13.
[97] 翟婉明.铁路车轮扁疤的动力学效应[J].铁道车辆,1994(7):1-5.
ZHAI Wan-ming. Dynamic effect of railway wheel flat[J].Rolling Stock, 1994(7): 1-5.(in Chinese)
[98] VER I L, VENTRES C S, MYLES M M. Wheel/rail noise—Part Ⅲ: impact noise generation by wheel and rail discontinuities[J]. Journal of Sound and Vibration, 1976, 46(3): 395-417.
[99] 王其昌.车轮扁疤冲击分析[J].西南交通大学学报,1991,26(4):45-48.
WANG Qi-chang. Analysis of impact influence of wheel tread flat spot on railway track[J]. Journal of Southwest Jiaotong University, 1991, 26(4): 45-48.(in Chinese)
[100] 王建斌,邬平波,唐 兆.车轮扁疤引发附加冲击力对车轴应力谱影响的研究[J].铁道学报,2006,28(1):39-43.
WANG Jian-bin, WU Ping-bo, TANG Zhao. Research on the axle stress spectrum considering extra wheelflat impact forces[J]. Journal of the China Railway Society, 2006, 28(1): 39-43.(in Chinese)
[101] STEENBERGEN M J M M. The role of the contact geometry in wheel-rail impact due to wheel flats[J]. Vehicle System Dynamics, 2007, 45(12): 1097-1116.
[102] BOGDEVICIUS M, ZYGIENE R, BUREIKA G, et al. An analytical mathematical method for calculation of the dynamic wheel-rail impact force caused by wheel flat[J]. Vehicle System Dynamics, 2016: 689-705.
[103] JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic loads[J]. Railway Engineering Journal, 1974, 3(1): 2-16.
[104] WU T X, THOMPSON D J. A hybrid model for the noise generation due to railway wheel flats[J]. Journal of Sound and Vibration, 2002, 251(1): 115-139.
[105] NIELSEN J C O, IGELAND A. Vertical dynamic interaction between train and track influence of wheel and track imperfections[J]. Journal of Sound and Vibration, 1995, 187(5): 825-839.
[106] 姜 涛,孙守光,缪龙秀,等.车轮扁疤动力冲击的仿真研究及其检测原理[J].铁道车辆,1998,36(5):25-26.
JIANG Tao, SUN Shou-guang, MIAO Long-xiu, et al. The emulation research for the dynamic impact by the wheel flat and the inspection principles[J]. Rolling Stock, 1998, 36(5): 25-26.(in Chinese)
[107] DUKKIPATI R V, DONG R. Impact loads due to wheel flats and shells[J]. Vehicle System Dynamics, 1999, 31(1): 1-22.
[108] UZZAL R U A, AHMED A K W, RAKHEJA S. Analysis of pitch plane railway vehicle-track interactions due to single and multiple wheel flats[J]. Journal of Rail and Rapid Transit, 2009, 223(F4): 375-390.
[109] UZZAL R U A, AHMED A K W, BHAT R B.Modelling, validation and analysis of a three-dimensional railway vehicle-rack system model with linear and nonlinear track properties in the presence of wheel flats[J]. Vehicle System Dynamics, 2013, 51(11): 1659-1721.
[110] BAEZA L, RODA A, CARBALLEIRA J, et al. Railway train-track dynamics for wheelflats with improved contact models[J]. Nonlinear Dynamics, 2006, 45(3): 385-397.
[111] ZHU J J, AHMED W, RAKHEJA S, et al. Impact load due to railway wheels with multiple flats predicted using an adaptive contact model[J]. Proceedings of the Institution of Mechanical Engineers, 2009, 223: 391-403.
[112] PIERINGER A, KROPP W, NIELSEN J C O. The influence of contact modelling on simulated wheel/rail interaction due to wheel flats[J]. Wear, 2014, 314(1): 273-281.
[113] FORD R A J, THOMPSON D J. Simplified contact filters in wheel rail noise prediction[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 807-818.
[114] ZHAI Wan-ming, CAI Cheng-biao, WANG Qi-chang, et al. Dynamic effects of vehicles on tracks in the case of raising train speeds[J]. Journal of Rail and Rapid Transit, 2001, 215(2): 125-135.
[115] 杨新文,翟婉明.高速铁路轮轨噪声理论计算与控制研究[J].中国铁道科学,2011,32(1):133-135.
YANG Xin-wen, ZHAI Wan-ming. Theoretical calculation and control study on the wheel/rail noises of high speed railway[J]. China Railway Science, 2011, 32(1): 133-135.(in Chinese)
[116] 张大伟,王开云,翟婉明.30 t轴重货车-重载铁路车轮扁疤动力效应分析[J].西南科技大学学报,2015,30(4):15-19.
ZHANG Da-wei, WANG Kai-yun, ZHAI Wan-ming.Effect of wheel flats on wheel/rail dynamic interaction in 30-ton heavy-haul railway[J]. Journal of Southwest University of Science and Technology, 2015, 30(4): 15-19.(in Chinese)
[117] LIU Yang, LIU Jian-xin, GUO Yu-jiang. Study on dynamic simulation input form of locomotive wheel flat[J]. Applied Mechanics and Materials, 2012, 215/216: 946-949.
[118] 王忆佳,曾 京,高 浩,等.车轮扁疤引起的轮轨冲击分析[J].西南交通大学学报,2014,49(4):700-705.
WANG Yi-jia, ZENG Jing, GAO Hao, et al. Analysis of wheel/rail impact induced by wheel flats[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 700-705.(in Chinese)
[119] 张 涛,陈再刚,翟婉明,等.车轮扁疤冲击下重载机车齿轮传动系统动态特性分析[J].科学通报,2019,64(25):2566-2572.
ZHANG Tao, CHEN Zai-gang, ZHAI Wan-ming, et al.Dynamic performance of gear transmission system in a heavy-haul locomotive under wheel flat impact[J]. Chinese Science Bulletin, 2019, 64(25): 2566-2572.(in Chinese)
[120] REN Zun-song. An investigation on wheel/rail impact
dynamics with a three-dimensional flat model[J]. Vehicle System Dynamics, 2018, 57(3): 369-388.
[121] BIAN Jian, GU Yuan-tong, MURRAY M H. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis[J]. Vehicle System Dynamics, 2013, 51(6): 784-797.
[122] KANOJE N K, SHARMA S C, HARSHA S P. Wheel-rail and wheel-flat as a coupled system: Contact dynamics modeling with finite element analysis[J]. Journal of Coupled Systems and Multiscale Dynamics, 2014, 2(1): 20-27.
[123] JING Lin, LIU Zhuo, LIU Kai. A mathematically-based
study of the random wheel-rail contact irregularity by wheel out-of-roundness[J]. Vehicle System Dynamics, 2020, DOI: 10.1080/00423114.2020.1815809.
[124] 刘 卓,敬 霖.基于位移激励法车轮扁疤引起的轮轨动态响应有限元分析[J].机械,2020,47(6):37-43.
LIU Zhuo, JING Lin. Finite element analysis of the dynamic wheel-rail response by wheel flat based on displacement excitation method[J]. Machinery, 2020, 47(6): 37-43.(in Chinese)
[125] WU Xing-wen, RAKHEJA S, AHMED A K W, et al.
Influence of a flexible wheelset on the dynamic responses of a high-speed railway car due to a wheel flat[J]. Journal of Rail and Rapid Transit, 2018, 232(4): 1033-1048.
[126] 邹航宇,张卫华,王志伟.车轮扁疤对高速列车齿轮箱动态特性影响分析[J].铁道机车车辆,2018,38(3):29-33,40.
ZOU Hang-yu, ZHANG Wei-hua, WANG Zhi-wei. Influence analysis of wheel flat on dynamic characteristics of high-speed train gearbox[J]. Railway Locomotive and Car, 2018, 38(3): 29-33, 40.(in Chinese)
[127] 杨 光,任尊松,袁雨青.车轮扁疤伤损对高速列车轮对动力学性能影响[J].北京交通大学学报,2018,42(3):103-111.
YANG Guang, REN Zun-song, YUAN Yu-qing.Influence of wheel flat on dynamic performance of high-speed train wheelset[J]. Journal of Beijing Jiaotong University, 2018, 42(3): 103-111.(in Chinese)
[128] 张 斌,付秀琴.铁路车轮、轮箍踏面剥离的类型及形成机理[J].中国铁道科学,2001,22(2):73-78.
ZHANG Bin, FU Xiu-qin. Type and formation mechanism of railway wheel and tire tread spall[J]. China Railway Science, 2001, 22(2): 73-78.(in Chinese)
[129] LIU Wei, MA Wei-hua, LUO Shi-hui, et al. Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration[J]. Vehicle System Dynamics, 2015, 53(4): 546-567.
[130] 张 军,王雪萍,马 贺.增黏砂对机车车轮踏面剥离影响的试验研究[J].机械工程学报,2018,54(8):68-73.
ZHANG Jun, WANG Xue-ping, MA He.Experimental study on influence of sanding on peeling of wheel tread of locomotive[J]. Journal of Mechanical Engineering, 2018, 54(8): 68-73.(in Chinese)
[131] 王文健,刘启跃.车轮踏面剥离机理研究[J].机械,2004,31(6):12-15.
WANG Wen-jian, LIU Qi-Yue. Research review on wheel tread spalling[J]. Machinery, 2004, 31(6): 12-15.(in Chinese)
[132] 郭 俊,王文健,张 伟,等.车轮踏面剥离试验研[J].铁道车辆,2006,44(4):1-4.
GUO Jun, WANG Wen-jian, ZHANG Wei, et al.Test and research on wheel tread peeling[J]. Rolling Stock, 2006, 44(4): 1-4.(in Chinese)
[133] CUMMINGS S M, LONSDALE C P. Wheel spalling literature review[C]∥ASME. ASME Rail Transportation Division Fall Conference.New York: ASME, 2008: 24-25.
[134] 陶贵闯,赵秀娟,潘金芝,等.D2高速车轮钢在滑动磨损下的白层形成与剥落[J].摩擦学学报,2018,38(4):437-444.
TAO Gui-chuang, ZHAO Xiu-juan, PAN Jin-zhi, et al. Formation and exfoliation of the while etching layer of D2 high speed wheel steel under sliding wear[J].Tribology, 2018, 38(4): 437-444.(in Chinese)
[135] 丛 韬,韩建民,张关震,等.铁路车轮轮辋疲劳裂纹和踏面剥离掉块的微观伤损因素分析[J].中国铁道科学,2017,38(5): 93-99.
CONG Tao, HAN Jian-min, ZHANG Guan-zhen, et al.Analysis of micro damage factors of shattered rim and tread shelling of railway wheel[J]. China Railway Science, 2017, 38(5): 93-99.(in Chinese)
[136] 张关震,任瑞铭,吴 斯,等.不均匀组织对高速动车组车轮踏面剥离损伤的影响[J].中国铁道科学,2019,40(5):80-86.
ZHANG Guan-zhen, REN Rui-ming, WU Si, et al. Influence of non-uniform microstructure on shelling damage of wheel tread for high speed EMU[J]. China Railway Science, 2019, 40(5): 80-86.(in Chinese)
[137] WANG Wen-jian, GUO Jun, LIU Qi-yue. Experimental
study on wear and spalling behaviors of railway wheel[J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1243-1249.
[138] KATO T, SUGETA A, NAKAYAMA E. Investigation of influence of white layer geometry on spalling property in railway wheel steel[J]. Wear, 2011, 271(1): 400-407.
[139] ZENG Dong-fang, LU Lian-tao, GONG Yan-hua, et al.
Influence of solid solution strengthening on spalling behavior of railway wheel steel[J]. Wear, 2017, 372/373: 158-168.
[140] STONE D H, CARLSON F G, BACHHUBER C G. Effect of brake-system components on wheel spalling[C]∥ASME. Proceedings of the 1999 ASME/IEEE Joint Railroad Conference. New York: ASME, 1999: 177-183.
[141] 汪 洋.地铁列车车轮踏面环状剥离的分析[J]. 电力机车与城轨车辆,2003,26(4):67-68.
WANG Yang.Analysis of circular spalling of wheel tread for metro train[J]. Electric Locomotives and Mass Transit Vehicles, 2003, 26(4): 67-68.(in Chinese)
[142] CUMMINGS S M, MCCABE T, GOSSELIN D. Brake shoes and thermal mechanical shelling[C]∥ASME. ASME Rail Transportation Division Fall Conference. New York: ASME, 2009, 24-25.
[143] KALOUSEK J, MAGEL E, STRASSER J, et al. Tribological interrelationship of seasonal fluctuations of freight car wheel wear, contact fatigue shelling and composition brakeshoe consumption[J]. Wear, 1996, 191: 210-218.
[144] 王玉辉.机车整体车轮踏面剥离原因分析与研究[J].铁道机车车辆,2012,32(1):87-88,112.
WANG Yu-hui. Reason analysis and research for tread peeling on locomotive solid wheel[J]. Railway Locomotive and Car, 2012, 32(1): 87-88, 112.(in Chinese)
[145] 王 晨,罗世辉,马卫华.机车轮对纵向振动与踏面剥离研究分析[J].内燃机车,2013(2):31-34.
WANG Chen, LUO Shi-hui, MA Wei-hua. Research and analysis on longitudinal vibration and tread spalling of locomotive wheelset[J]. Railway Locomotive and Motor Car, 2013(2): 31-34.(in Chinese)
[146] КРАСНОВ О Г.车轮踏面出现缺陷时转向架承载铸件的承载能力[J].国外机车车辆工艺,2017(5):30-35,40.
КРАСНОВ О Г. Bearing capacity of bogie bearing castings with defects on wheel tread[J]. Foreign Locomotive and Rolling Stock Technology, 2017(5): 30-35, 40.(in Chinese)
[147] 汪金余.车轮内部损伤及踏面剥离的研究[D].大连:大连交通大学,2018.
WANG Jin-yu. Research on wheel internal damage and tread spelling[D]. Dalian: Dalian Jiaotong University, 2018.(in Chinese)
[148] 郭 鑫.车轮踏面剥离对轮轨动态接触行为和疲劳寿命的影响[D].成都:西南交通大学,2020.
GUO Xin. Influence of tread spalling on dynamic wheel-rail contact behavior and fatigue life[D]. Chengdu: Southwest Jiaotong University, 2020.(in Chinese)
[149] TAO Gong-quan, WANG Lin-feng, WEN Ze-feng, et al.
Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels[J]. Vehicle System Dynamics, 2018, 56(6): 883-899.
[150] 金学松,吴 越,梁树林.车轮非圆化磨耗问题研究进展[J].西南交通大学学报,2018,53(1):1-14.
JIN Xue-song, WU Yue, LIANG Shu-lin.Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14.(in Chinese)
[151] 朱海燕,胡华涛,尹必超,等.轨道车辆车轮多边形研究进展[J].交通运输工程学报,2020,20(1):102-119.
ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al.Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119.(in Chinese)
[152] 王忆佳.车轮踏面伤损对高速列车动力学行为的影响[D].成都:西南交通大学,2014.
WANG Yi-jia. Effect of wheel tread damage on dynamic behavior of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2014.(in Chinese)
[153] KAPER H P. Wheel corrugation on Netherlands railways(NS): origin and effects on “polygonization” in particular[J]. Journal of Sound and Vibration, 1988, 120(2): 267-274.
[154] BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 1997, 24(4): 435-442.
[155] MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978.
[156] 陈光雄,金学松,邬平波,等.车轮多边形磨耗机理的有限元研究[J].铁道学报,2011,33(1):14-18.
CHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al.Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18.(in Chinese)
[157] 崔大宾,梁树林,宋春元,等.高速车轮非圆化现象及其对轮轨行为的影响[J].机械工程学报,2013,48(18):8-16.
CUI Da-bin, LIANG Shu-lin, SONG Chun-yuan, et al. Out-of-round high-speed wheel and its influence on wheel/rail behavior[J]. Journal of Mechanical Engineering, 2013, 48(18): 8-16.(in Chinese)
[158] MEINKE P, MEINKE S. Polygonalization of wheel treads caused by static and dynamic imbalances[J]. Journal of Sound and Vibration, 1999, 227(5): 979-986.
[159] MEYWERK M. Polygonalization of railway wheels[J].
Archive of Applied Mechanics, 1999, 69: 105-120.


Last Update: 2021-03-20