[1] 金学松,沈志云.轮轨滚动接触疲劳问题研究的最新进展[J].铁道学报,2001,23(2):92-108.
JIN Xue-song, SHEN Zhi-yun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 23(2): 92-108.(in Chinese)
[2] CANNON D F, EDEL K O, GRASSIE S L, et al. Rail defects: an overview[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 865-886.
[3] SMITH R A. Railway fatigue failures: an overview of a long standing problem[J]. Material Science and Engineering Technology, 2005, 36(11): 697-705.
[4] GRASSIE S L. Rolling contact fatigue on the British Railway System: treatment[J]. Wear, 2005, 258(7/8): 1310-1318.
[5] LI Zi-li, DOLLEVOET R, MOLODOVA M, et al. Squat growth—some observations and the validation of numerical predictions[J]. Wear, 2011, 271(1/2): 148-157.
[6] KARTTUNEN K, KABO E, EKBERG A. The influence of track geometry irregularities on rolling contact fatigue[J]. Wear, 2014, 314(1/2): 78-86.
[7] GROHMANN H D, HEMPELMANN K A, GROB-THEBING A. A new type of RCF, experimental investigations and theoretical modeling[J]. Wear, 2002, 253(1/2): 67-74.
[8] BOGDAAN'NSKI S. Quasi-static and dynamic liquid solid interaction in 3D squat-type cracks[J]. Wear, 2014, 314(1/2): 20-27.
[9] TUNNA J, SINCLAIR J, PEREZ J. A review of wheel wear and rolling contact fatigue[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2007, 221(2): 271-289.
[10] 金学松,张继业,温泽峰,等.轮轨滚动接触疲劳现象分析[J].机械强度,2002,24(2):250-257.
JIN Xue-song, ZHANG Ji-ye, WEN Ze-feng, et al. Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002, 24(2): 250-257.(in Chinese)
[11] CANNON D F. An international cross reference of rail defects[R].Paris: International Union of Railways, 2003.
[12] EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview[J]. Wear, 2005, 258(7): 1288-1300.
[13] ZHANG Guan-zhen, REN Rui-ming. Study on typical failure forms and causes of high-speed railway wheels[J]. Engineering Failure Analysis, 2019, 105(1): 1287-1295.
[14] CONG Tao, HAN Jian-min, HONG Youshi, et al. Shattered rim and shelling of high-speed railway wheels in the very-highcycle fatigue regime under rolling contact loading[J]. Engineering Failure Analysis, 2019, 97(1): 556-567.
[15] DEUCE R. Wheel tread damage—an elementary guide[R].
Netphen: Bombardier Transportation Gmbh, 2007.
[16] MAGEL E. Rolling contact fatigue: a comprehensive review[R]. Washington DC: U.S. Department of Transportation, 2011.
[17] EKBERG A, KABO E, KARTTUNEN K, et al. Identifying the root causes of damage on the wheels of heavy haul locomotives and its mitigation[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2014, 228(6): 663-672.
[18] ZHAO Xin, WEN Ze-feng, LIU De-gang, et al. Observations and monitoring of the rolling contact fatigue of Chinese high-speed wheels[C]∥GAO Xiao-rong. Proceedings of the 18th International Wheelset Congress. New York: IEEE, 2016: 55-59.
[19] DOLLEVOET R. Design of an anti-head check profile based on stress relief[D]. Tenschede: University of Twente, 2010.
[20] FLETCHER D I, FRANKLIN F J, KAPOOR A. Rail
surface fatigue and wear[M]∥LEWIS R, OLOFSSON U. Wheel-Rail Interface Handbook. New York: CRC Press, 2009: 280-310.
[21] INNOTRACK. D4.1.4 Rail degradation algorithm[R].
Berlin: Corus Rail and voestalpine Schienen, 2009.
[22] ZHAO Xin. Dynamic wheel/rail rolling contact at singular
defects with application to squats[D]. Delft: Delft University of Technology, 2012.
[23] ZHAO Xin, AN Bo-yang, ZHAO Xiao-gang, et al. Local rolling contact fatigue and indentations on high-speed railway wheels: observations and numerical simulations[J]. International Journal of Fatigue, 2017, 103(1): 5-16.
[24] LUTHER M, MÄDLER K, HEYDER R. Prevention of multiple squats and rail maintenance measures[C]∥LI Zi-li, NUNEZ A. Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Delft: Delft University of Technology, 2018: 618-622.
[25] ZHAO Xin, WANG Zhe, WEN Ze-feng, et al. The initiation of local rolling contact fatigue on railway wheels: an experimental study[J]. International Journal of Fatigue, 2020, 132(1): 105354.
[26] DANIEL W J, PAL S, FARJOO M. Rail squats: progress in understanding the Australian experience[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2013, 227(5): 481-492.
[27] AI-JUBOORI A, ZHU H, WEXLER D. Characterisation of white etching layers formed on rails subjected to different traffic conditions[J]. Wear, 2019, 436/437(1): 202998.
[28] LI Zi-li, ZHAO Xin, ESVELD C, et al. An investigation into the causes of squats: correlation analysis and numerical modeling[J]. Wear, 2008, 265(9/10): 1349-55.
[29] 习年生,刘丰收,周清跃.钢轨滚动接触疲劳缺陷的特征与发展模式[J].理化检验—物理分册,2005,41(增):95-99.
XI Nian-sheng, LIU Feng-shou, ZHOU Qing-yue. Characteristics and development modes of rail rolling contact fatigue[J]. Physical Testing and Chemical Analysis—Physical Testing, 2005, 41(S): 95-99.
[30] 陈水友,刘吉华,郭 俊,等.车轮材料特性对轮轨磨损与疲劳性能影响的研究[J].摩擦学学报,2015,35(5):531-537.
CHEN Shui-you, LIU Ji-hua, GUO Jun, et al. Effect of wheel material characteristics on wear and fatigue property of wheel-rail[J]. Tribology, 2015, 35(5): 531-537.(in Chinese)
[31] DONZELLA G, MAZZÙ A, PETROGALLI C. Competition between wear and rolling contact fatigue at the wheel-rail interface: some experimental evidence of rail steel[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2009, 223(1): 31-44.
[32] EADIE D T, ELVIDGE D, OLDKNOW K, et al. The effects of top of rail friction modifier on wear and rolling contact fatigue: full-scale rail-wheel test rig evaluation, analysis and modeling[J]. Wear, 2008, 265(9/10): 1222-1230.
[33] OLOFSSON U, NILSSON R. Surface cracks and wear of rail: a full-scale test on commuter train track[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2002, 216(4): 249-264.
[34] BOYACIOGLU P, BEVAN A, VICKERSTAFF A. Prediction of RCF damage on underground metro lines[C]∥ZHAI Wan-ming. Proceedings of the 1st International Conference on Rail Transportation. Chengdu: Southwest Jiaotong University, 2017: 207-225.
[35] FRANKLIN F J, WIDIYARTA I, KAPOOR A. Computer simulation of wear and rolling contact fatigue[J]. Wear, 2001, 251(1/2): 949-955.
[36] FRANKLIN F J, GARNHAM J E, FLETCHER D I, et al. Modelling rail steel microstructure and its effect on crack initiation[J]. Wear, 2008, 265(9): 1332-1341.
[37] VASIC G, FRANKLIN F J. Modelling of plastic deformation and crack initiation in premium pearlitic rail steels[C]∥GRASSIE K L, ZHANG Wei-hua. Proceedings of the 9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Chengdu: Southwest Jiaotong University, 2012: 372-378.
[38] 丁军君,孙树磊,李 芾,等.车轮滚动接触疲劳与磨耗耦合关系数值模拟[J].机械工程学报,2012,48(16):86-90.
DING Jun-jun, SUN Shu-lei, LI Fu, et al. Simulation of coupling relationship between wheel rolling contact fatigue and wear[J]. Journal of Mechanical Engineering, 2012, 48(16): 86-90.(in Chinese)
[39] WANG Shuai-shuai, ZHAO Xiu-juan, LIU Peng-tao, et al.
Investigation of the relation between rolling contact fatigue property and microstructure on the surface layer of D2 wheel steel[J]. Materials Sciences and Applications, 2019, 10(8): 509-526.
[40] VARVANI-FARAHANI A, TOPPER T H. Crack growth and closure mechanisms of shear cracks under constant amplitude biaxial straining and periodic compressive overstraining in 1045 steel[J]. International journal of fatigue, 1997, 19(7): 589-596.
[41] CLAYTON P. Tribological aspects of wheel-rail contact: a review of recent experimental research[J]. Wear, 1996, 191(1): 170-183.
[42] JOHNSON K L. The strength of surfaces in rolling contact[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1989, 203(3): 151-163.
[43] CHEN H, FUKAGAI S, SONE Y, et al. Assessment of
lubricant applied to wheel/rail interface in curves[J]. Wear, 2014, 314(1/2): 228-35.
[44] TYFOUR W R, BEYNON J H, KAPOOR A. Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling-sliding line contact[J]. Wear, 1996, 197(1): 255-265.
[45] STEENBERGEN M. Squat formation and rolling contact fatigue in curved rail track[J]. Engineering Fracture Mechanics, 2015, 143(7): 80-96.
[46] BOWER A F. The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks[J]. Journal of Tribology, 1988, 110(4): 704-711.
[47] BOGDANSKI S, OLZAK M, STUPNICKI J. Numerical
modelling of a 3D rail RCF squat-type crack under operating load[J]. Fatigue and Fracture of Engineering Materials and Structures, 1998, 21(8): 923-935.
[48] CLAYTON P, HILL D N. Rolling contact fatigue of a rail steel[J]. Wear, 1987, 117(3): 319-334.
[49] FLETCHER D I, BEYNON J H. The effect of intermittent lubrication on the fatigue life of pearlitic rail steel in rolling-sliding contact[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2000, 214(3): 145-158.
[50] ISHIDA M, ABE N. Experimental study on rolling contact fatigue from the aspect of residual stress[J]. Wear, 1996, 191(1): 65-71.
[51] SATO M, ANDERSON P M, RIGNEY D A. Rolling-sliding behavior of rail steels[J]. Wear, 1993, 162-164(4): 159-72.
[52] LITTMANN W E, WIDNER R L, WOLFE J O, et al. The role of lubrication in propagation of contact fatigue cracks[J]. Journal of Tribology, 1968, 90(1): 89-100.
[53] KONDO K, YOROIZAKA K, SATO Y. Cause, increase, diagnosis, countermeasures and elimination of Shinkansen shelling[J]. Wear, 1996, 191(1): 199-203.
[54] KALOUSEK J, MAGEL E, STRASSER J, et al. Tribological interrelationship of seasonal fluctuations of freight car wheel wear, contact fatigue shelling and composition brakeshoe consumption[J]. Wear, 1996, 191(1): 210-218.
[55] FLETCHER D I, HYDE P, KAPOOR A. Modelling and full-scale trials to investigate fluid pressurisation of rolling contact fatigue cracks[J]. Wear, 2008, 265(9): 1317-1324.
[56] NIA S H, CASANUEVA C, STICHEL S. Prediction of RCF and wear evolution of iron-ore locomotive wheels[J]. Wear, 2015, 338/339(1): 62-72.
[57] HARDWICK C, LEWIS R, STOCK R. The effects of friction management materials on rail with pre-existing RCF surface damage[J]. Wear, 2017, 384/385(1): 50-60.
[58] EKBERG A, AKESSON B, KABO E. Wheel/rail rolling contact fatigue-probe, predict, prevent[J]. Wear, 2014, 314(1/2): 2-12.
[59] ARIAS-CUEVAS O, LI Zi-li, LEWIS R, Investigating the
lubricity and electrical insulation caused by sanding in dry wheel-rail contact[J]. Tribology Letter, 2010, 37(3): 623-635.
[60] ZHAO Xin, WEN Ze-feng, ZHU Min-hao, et al. A study on high-speed rolling contact between a wheel and a contaminated rail[J]. Vehicle System Dynamics, 2014, 52(10): 1270-1287.
[61] 张振先,谭 江,黄双超,等.复杂运行环境下高速轮轨最佳撒砂增黏策略试验[J].中国铁道科学,2020,41(2):123-130.
ZHANG Zhen-xian, TAN Jiang, HUANG Shuang-chao, et al. Experimental study on optimum sanding and adhesion enhancement strategy for high speed wheel and rail under complicated operation environments[J]. China Railway Science, 2020, 41(2): 123-130.(in Chinese)
[62] 张 军,王雪萍,马 贺.第三介质对轮轨最大静摩擦因数影响的试验[J].机械工程学报,2018,54(18):123-128.
ZHANG Jun, WANG Xue-ping, MA He. Experimental study on the influence of the third medium on the wheel/rail maximum static friction coefficient[J]. Journal of Mechanical Engineering, 2018, 54(18): 123-128.(in Chinese)
[63] CAO X, HUANG W L, HE C G, et al. The effect of alumina particle on improving adhesion and wear damage of wheel/rail under wet conditions[J]. Wear, 2016, 348/349: 98-115.
[64] FACCOLI M, PETROGALLI C, LANCINI M, et al. Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels, Wear, 2017, 396/397: 146-161.
[65] LEWIS R, DWYER-JOYCE R S, Wheel-rail wear and surface damage caused by adhesion sanding[J]. Tribology Series, 2003, 43(1): 731-741.
[66] LIU Yong-feng, JIANG Tao, ZHAO Xin, et al. On the wheel rolling contact fatigue of high power ac locomotives running in complicated environments[J]. Wear, 2019, 436/437: 202956.
[67] 刘丰收.高速铁路钢轨磨耗的跟踪研究[J].铁道建筑,2016,56(11):120-123.
LIU Feng-shou. Tracing research on rail wear in high-speed railway[J]. Railway Engineering, 2016, 56(11): 120-123.(in Chinese)
[68] TG/GL 127—2013,铁路动车组运用维修规程[S].
TG/GL 127—2013, railway EMU operation and maintenance regulations[S].
[69] 中国国家铁路集团有限公司.2019年全路钢轨伤损分析报告[R].北京:中国国家铁路集团有限公司,2020.
China Railway. Report of rail failure on Chinese railway network[R]. Beijing: China Railway, 2020.
[70] PLETZ M, DAVES W, YAO Wei-ping, et al. Multi-scale finite element modeling to describe rolling contact fatigue in a wheel-rail test rig[J]. Tribology International, 2014, 80(1): 147-155.
[71] ZHAO Xin, ZHAO Xiao-gang, LIU Chao, et al. A study on dynamic stress intensity factors of rail cracks at high speeds by a 3D explicit finite element model of rolling contact[J]. Wear, 2016, 366/367(1): 60-70.
[72] GARNHAM J E, DAVIS C L. The role of deformed rail microstructure on rolling contact fatigue initiation[J]. Wear, 2008, 265(9/10): 1363-1372.
[73] JOHNSON K L. Contact mechanics[D]. London: Cambridge
University Press, 1985.
[74] HIRAKAWA K. Truth of derailment at Hatfield in UK[M]. Kyoto: Keibunsha, 2008.(in Japanese)
[75] MAKINO T, KATO T, HIRAKAWA K. The effect of slip
ratio on the rolling contact fatigue property of railway wheel steel[J]. International Journal of Fatigue, 2012, 36(1): 68-79.
[76] EKBERG A, KABO E, ANDERSSON H. An engineering
model for prediction of RCF of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909.
[77] DIRKS B, ENBLOM R. Prediction model for wheel profile wear and rolling contact fatigue[J] Wear, 2011, 271(1): 210-217.
[78] KABO E, EKBERG A, TORSTENSSON P T, at al. Rolling contact fatigue prediction for rails and comparisons with test rig results[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2010, 224(4): 303-317.
[79] BURSTOW M C. Whole life rail model application and
development for RSSB, continued development of an RCF damage parameter[R]. London: Rail Standards and Safety Board, 2004.
[80] TUNNA J, SINCLAIR J, PEREZ J. The development of a wheel wear and rolling contact fatigue model[R]. London: Rail Standards and Safety Board, 2007.
[81] BURSTOW M. Experience of premium grade rail steels to resist rolling contact fatigue RCF on GB network[J]. Ironmaking and Steelmaking, 2013, 40(2): 103-107.
[82] HIENSCH M, STEENBERGEN M. Rolling contact fatigue on premium rail grades: damage function development from field data[J]. Wear, 2018, 394/395(1): 187-194.
[83] HILL D N, CLAYTON P. The development of a laboratory rolling contact fatigue testing procedure[R]. Derby: TMMF, 1982.
[84] 刘颍宾,宫彦华,王 强,等.列车车轮滚动接触疲劳裂纹评价研究[J].摩擦学学报,2020,40(3):305-313.
LIU Ying-bin, GONG Yan-hua, WANG Qiang, et al. Evaluation of rolling contact fatigue crack of train wheels[J]. Tribology, 2020, 40(3): 305-313.(in Chinese)
[85] RINGSBERG J W, LOO-MORREY M, JOSEFSON B L, et al. Prediction of fatigue crack initiation for rolling contact fatigue[J]. International Journal of Fatigue, 2000, 22(3): 205-215.
[86] JIANG Yan-yao, SEHITOGLU H. A model for rolling contact failure[J]. Wear, 1999, 224(1): 38-49.
[87] SANDSTRÖM J, EKBERG A. Numerical study of the mechanical deterioration of insulated rail joints[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2009, 223(3): 265-273.
[88] TALLIAN T E. Simplified contact fatigue life prediction model: part I. Review of published models, part II. New model[J]. Journal of Tribology, 1992, 114(2): 207-220.
[89] VAN K D, MAITOURNAM M H. On some recent trends in modeling of contact fatigue and wear in rail[J]. Wear, 2002, 253(1/2): 219-227.
[90] SAKALO V, SAKALO A, RODILOV A, et al. Computer modeling of processes of wear and accumulation of rolling contact fatigue damage in railway wheels using combined criterion[J]. Wear, 2019, 432/433(1): 102900.
[91] LU C, NIETO J, PUY I, et al. Fatigue prediction of rail welded joints[J]. International Journal of Fatigue, 2018, 113(1): 78-87.
[92] LI Zi-li, ZHAO Xin, DOLLEVOET R. An approach to
determine a critical size for rolling contact fatigue initiating from rail surface defects[J]. International Journal of Rail Transportation, 2017, 5(1): 16-37.
[93] 王延朋,丁昊昊,邹 强,等,列车车轮踏面滚动接触疲劳研究进展[J].表面技术,2020,49(5):120-128.
WANG Yan-peng, DING Hao-hao, ZOU Qiang, et al. Research progress on rolling contact fatigue of railway wheel treads[J]. Surface Technology, 2020, 49(5): 120-128.(in Chinese)
[94] 肖 乾,方 骏.铁道车辆轮轨滚动接触疲劳裂纹研究综述[J].华东交通大学学报,2015,32(1):16-21.
XIAO Qian, FANG Jun. Research review on wheel-rail rolling contact fatigue crack of railway vehicles[J]. Journal of East China Jiaotong University, 2015, 32(1): 16-21.(in Chinese)
[95] ZHAO Xin, LI Zi-li, DOLLEVOET R. The vertical and the longitudinal dynamic responses of the vehicle-track system to squat type short wavelength irregularity[J]. Vehicle System Dynamics, 2013, 51(12): 1918-1937.
[96] ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University—Science A(Applied Physics and Engineering), 2014, 15(12): 946-963.
[97] 寇峻瑜,赵 鑫,张 鹏,等.高速滚滑下轮轨表层材料的应变率水平估计[J].工程力学,2019,36(4):239-247.
KOU Jun-yu, ZHAO Xin, ZHANG Peng. Estimation of strain rates for wheel-rail surface materials under high-speed rolling-sliding contact[J]. Engineering Mechanics, 2019, 36(4): 239-247.(in Chinese)
[98] STOCK R, PIPPAN R. RCF and wear in theory and practice—the influence of rail grade on wear and RCF[J]. Wear, 2011, 271(1): 125-133.
[99] 王文健.轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D].成都:西南交通大学,2008.
WANG Wen-jian. Study on coupling relationship between rolling contact fatigue and wear of wheel-rail and prevention measures[D]. Chengdu: Southwest Jiaotong University, 2008.(in Chinese)
[100] POINTNER P. High strength rail steels—the importance of material properties in contact mechanics problems[J]. Wear, 2008, 265(9/10): 1373-1379.
[101] STEELE R K, REIFF R P. Rail: its behaviour and relationship to total system wear[C]∥Federal Railroad Administration. Proceedings of International Heavy Haul Conference. Pueblo: Federal Railroad Administration, 1981: 115-164.
[102] ZHAO Xin, LI Zi-li. The solution of frictional wheel-rail
rolling contact with a 3-D transient finite element model: validation and error analysis[J]. Wear, 2011, 271(1/2): 444-452.
[103] ZHAO Xin, LI Zi-li. A three-dimensional finite element solution of frictional wheel-rail rolling contact in elasto-plasticity[J]. Journal of Engineering Tribology, 2015, 229(1): 86-100.
[104] ZHAO Xin, ZHANG Peng, WEN Ze-feng. On the coupling of the vertical, lateral and longitudinal wheel-rail interactions at high frequencies and the resulting irregular wear[J]. Wear, 2019, 430/431(1): 317-326.
[105] 周平宇,马利军.关于动车组车轮踏面浅表层损伤机理及对策[J].铁道车辆,2015,53(2):30-31.
ZHOU Ping-yu, MA Li-jun. The shallow surface damage mechanism of wheel treads for multiple units and counter measures[J]. Rolling Stock, 2015, 53(2): 30-31.(in Chinese)
[106] 王培东,郑 静,李富强.动车组车轮踏面滚动接触疲劳安全评估研究[J].铁道车辆,2020,58(2):12-13.
WANG Pei-dong, ZHENG Jing, LI Fu-qiang. Studies into rolling contact fatigue of EMU wheels[J]. Rolling Stock, 2020, 58(2): 12-13.
[107] CANTINI S, CERVELLO S. The competitive role of wear and RCF: full scale experimental assessment of artificial and natural defects in railway wheel treads[J]. Wear, 2016, 366/367(1): 325-37.
[108] 张 弘.动车组车轮踏面浅表层裂纹成因分析[J].铁道机车车辆,2006:36(1):6-9.
ZHANG Hong. Reason analysis of shallow surface cracks on EMU wheels tread[J]. Railway Locomotive and Car, 2006, 36(1): 6-9.(in Chinese)
[109] ZHAO Xiang-ji, GUO Jun, LIU Qi-yue, et al. Effects of
spherical dents on microstructure evolution and rolling contact fatigue of wheel/rail materials[J]. Tribology International, 2018, 127(11): 520-532.
[110] ZENG Dong-fang, XU Tian, LIU Wei-dong, et al. Investigation on rolling contact fatigue of railway wheel steel with surface defect[J]. Wear, 2020, 446/447(1): 203207.
[111] 蔡宇天,赵 鑫,陈佳明,等.城际动车组车轮I类滚动接触疲劳机理研究[J].中南大学学报(自然科学版),2020,51(9):2653-2662.
CAI Yu-tian, ZHAO Xin, CHEN Jiaming, et al. Study on initiation mechanism of rolling contact fatigue class I on intercity EMU wheels[J]. Journal of Central South University(Science and Technology), 2020, 51(9): 2653-2662.(in Chinese)
[112] 王玉光,卢 纯,赵 鑫,等.高速动车组车轮滚动接触疲劳观测与模拟研究[J].机械工程学报,2018,54(4):150-157.
WANG Yu-guang, LU Cun, ZHAO Xin, et al. Rolling contact fatigue of Chinese high speed wheels: observations and simulations[J]. Journal of Mechanical Engineering, 2018, 54(4): 150-157.(in Chinese)
[113] MAGEL E, RONEY M, KALOUSEK J, et al. The blending of theory and practice in modern rail grinding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(1): 921-929.
[114] CUI Da-bin, WANG Heng-yu, LI Li, et al. Optimal design of wheel profiles for high-speed trains[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2015, 229(3): 248-261.
[115] 王晓东,林晓晨,李培署.和谐号CRH6型动车组制动减速度设计与控制[J].铁道车辆,2016,54(6):15-19,4.
WANG Xiao-dong, LIN Xiao-chen, LI Pei-shu. Design and control of the braking deceleration of the CRH6 multiple units[J]. Rolling Stock, 2016, 54(6): 15-19, 4.(in Chinese)
[116] 丁叁叁,张忠敏,何丹炉,等.城际动车组总体技术设计[J].机车电传动,2014(6):10-15.
DING San-san, ZHANG Zhong-min, HE Dan-lu, et al. Overall technical design of intercity EMUs[J]. Electric Drive for Locomotives, 2014(6): 10-15.(in Chinese)
[117] 何成刚,周桂源,王 娟,等.曲率半径对车轮滚动接触疲劳性能的影响[J].摩擦学学报,2014,34(3):256-261.
HE Cheng-gang, ZHOU Gui-yuan, WANG Juan, et al. Effect of curve radius of rail on rolling contact fatigue properties of wheel steel[J]. Tribology, 2014, 34(3): 256-261.(in Chinese)
[118] ZHOU Gui-yuan, HE Cheng-gang, WEN Guang, et al. Fatigue damage mechanism of railway wheels under lateral forces[J]. Tribology International, 2015, 91(1): 160-169.
[119] 李 霞,温泽峰,金学松.重载铁路车轮磨耗与滚动接触疲劳研究[J].铁道学报,2011,33(3):28-34.
LI Xia, WEN Ze-feng, JIN Xue-song. Investigation into wheel wear and fatigue of heavy-haul railways[J]. Journal of the China Railway Society, 2011, 33(3): 28-34.(in Chinese)
[120] HUANG Y B, SHI L B, ZHAO X J, et al. On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition[J]. Wear, 2018, 400/401(1): 62-73.
[121] 邓建辉,刘启跃,王飞龙,等.车速对钢轨接触疲劳伤损的影响及高速线路钢轨选用[J].钢铁钒钛,2006,27(3):48-54.
DENG Jian-hui, LIU Qi-yue, WANG Fei-long, et al. Influence of train velocity on rail contact fatigue damage and how to select rail for high-speed[J]. Iron Steel Vanadium Titanium, 2006, 27(3): 48-54.(in Chinese)
[122] XIAO Qian, ZHENG Ji-feng, LIU Ji-hua, et al. Analysis of the wheel/rail rolling contact fatigue of a high-speed train under the transient mechanism[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2235-2242.
[123] NIELSEN J C O, EKBERG A. Acceptance criterion for rail roughness level spectrum based on assessment of rolling contact fatigue and rolling noise[J]. Wear, 2011, 271(1/2): 319-327.
[124] EKBERG A, KABO E, NIELSEN J C O, et al. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation[J]. International Journal of Solids and Structures, 2007, 44(24): 7975-7987.
[125] MA L, HE C G, ZHAO X J, et al. Study on wear and rolling contact fatigue behaviors of wheel/rail materials under different slip ratio conditions[J]. Wear, 2016, 366/367(1): 13-26.
[126] 张聪聪,周 宇,黄旭炜,等.高速铁路钢轨预打磨策略及伤损发展特征[J].华东交通大学学报,2019,36(2):33-40.
ZHANG Cong-cong, ZHOU Yu, HUANG Xun-wei, et al. Research on the rail pre-grinding strategy and growth characteristics of rail defects in high-speed railway[J]. Journal of East China Jiaotong University, 2019, 36(2): 33-40.(in Chinese)
[127] STONE D H. Rolling contact fatigue origins of wheel failures in heavy haul service[C]∥GRASSIE K L, ZHANG Wei-hua. Proceedings of 9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Chengdu: Southwest Jiaotong University, 2012, 19-27.
[128] 王家玉,王顺福.机车轮对JM、JM2、JM3磨耗型踏面及其剥离[J].内燃机车,2009(5):34-37.
WANG Jia-yu, WANG Shun-fu. Worn profile tread JM, JM2 and JM3 for locomotive wheel and the tread shelled-out [J]. Diesel Locomotives, 2009(5): 34-37.(in Chinese)
[129] LIU Yong-feng, JIANG Tao, ZHAO Xin, et al. Effects of axle load transfer on wheel rolling contact fatigue of high-power AC locomotives with oblique traction rods[J]. International Journal of Fatigue, 2020, 139(1): 105748.
[130] LYU Kai-kai, WANG Kai-yun, LIU Peng-fei, et al. Analysis on the features and potential causes of wheel surface damage for heavy-haul locomotives[J]. Engineering Failure Analysis, 2019, 109(1): 104292.
[131] 吕凯凯.大功率电力机车踏面剥离产生机制的理论与试验研究[D].成都:西南交通大学,2020.
LYU Kai-kai.Theoretical and experimental investigation into the generation mechanism of wheel tread spalling on high-power electric locomotive[D]. Chengdu: Southwest Jiaotong University, 2020.(in Chinese)
[132] 王文斌. HXD2C型机车轮对踏面剥离问题的分析研究[J]. 机车电传动,2017(4):113-116.
WANG Wen-bin.A study on wheel spalling of HXD2C locomotives [J] Electric Drive for Locomotives, 2017(4): 113-116.(in Chinese)
[133] 崔银会,张 斌.200 km·h-1轻型客车车轮踏面剥离原因分析[J].轧钢,2003,20(3):13-15.
CUI Yin-hui, ZHANG Bin. Analysis of the shelling causes of wheel tread of 200 km·h-1 light passenger train[J]. Steel Rolling, 2003, 20(3): 13-15.(in Chinese)
[134] 陶功权,王衡禹,赵 鑫,等.基于轮轨关系的车轮踏面损伤机理研究[J].机械工程学报,2013,49(18):23-29.
TAO Gong-quan,WANG Heng-yu, ZHAO Xin, et al. Research on wheel tread damage mechanism based on interaction of wheel and rail[J]. Journal of Mechanical Engineering, 2013, 49(18): 23-29.(in Chinese)
[135] 陶功权.KKD客车车轮踏面剥离成因初探[D].成都:西南交通大学,2013.
TAO Gong-quan. Preliminary study on the cause of wheel tread shelling of KKD passenger car[D]. Chengdu: Southwest Jiaotong University, 2013.(in Chinese)
[136] ZHOU Yu, WANG Shao-feng, WANG Tian-yi, et al. Field and laboratory investigation of the relationship between railhead check and wear in a heavy-haul railway[J]. Wear, 2014, 315(1/2): 68-77.
[137] 周 宇,张 杰,杨新文,等.U75V热处理钢轨滚动接触疲劳裂纹和磨耗试验[J].同济大学学报(自然科学版),2015,43(6):877-881.
ZHOU Yu, ZHANG Jie, YANG Xin-wen, et al. Experiment on the rolling contact fatigue crack and wear of U75V heat-treated rail[J]. Journal of Tongji University(Natural Science), 2015, 43(6): 877-881.(in Chinese)
[138] 周 宇,李骏鹏,司道林.普速铁路钢轨滚动接触疲劳裂纹萌生研究和检验[J].铁道建筑,2020,60(5):107-111.
ZHOU Yu, LI Jun-peng, SI Dao-lin. Research and validation on rolling contact fatigue crack initiation in existing common speed railway[J]. Railway Engineering, 2020, 60(5): 107-111.(in Chinese)
[139] 刘学文,邹定强,邢丽贤,等.钢轨踏面斜裂纹伤损原因及对策的研究[J].中国铁道科学,2004,25(2):82-87.
LIU Xue-wen, ZOU Ding-qiang, XING Li-xian. Causes of tread oblique crack and countermeasures[J]. China Railway Science, 2004, 25(2): 82-87.(in Chinese)
[140] 赵雪芹,王文健,郭 俊,等.广深线 PD3与 U71Mn钢轨斜裂纹形成特性分析[J].润滑与密封,2007,32(3):35-37.
ZHAO Xue-qin, WANG Wen-jian, GUO Jun, et al. An investigation on formation characteristic of oblique crack of PD3 and U71Mn rail in Guangzhou-Shenzhen Railway[J]. Lubrication Engineering, 2007, 32(3): 35-37.(in Chinese)
[141] 钟 雯.钢轨的损伤机理研究[D].成都:西南交通大学,2011.
ZHONG Wen. Experimental investigation of rail damnification mechanism[D]. Chengdu: Southwest Jiaotong University, 2011.(in Chinese)
[142] 熊嘉阳.钢轨斜裂纹形成机理研究[D].成都:西南交通大学,2006.
XIONG Jia-yang. Study on the formative mechanism of rail oblique crack[D]. Chengdu: Southwest Jiaotong University, 2006.(in Chinese)
[143] 郭 俊.轮轨滚动接触疲劳损伤机理研究[D].成都:西南交通大学,2006.
GUO Jun. Study on mechanism of wheel-rail rolling contact fatigue and damage[D]. Chengdu: Southwest Jiaotong University, 2006.(in Chinese)
[144] 周 宇,黄旭炜,王树国,等.考虑轨道几何不平顺的钢轨裂纹萌生与磨耗共存预测[J].同济大学学报(自然科学版),2019,47(11):1600-1608.
ZHOU Yu, HUANG Xun-wei, WANG Shu-guo, et al. Prediction of rail rolling contact fatigue crack initiation and wear growth considering track geometry irregularity[J]. Journal of Tongji University(Natural Science), 2019, 47(11): 1600-1608.(in Chinese)
[145] 叶都玮.城市轨道交通车辆车轮踏面缺陷产生的机理和预防措施[J].城市轨道交通研究,2011,14(1):106-109.
YE Du-wei. Mechanism of urban mass transits wheel tread defects and preventive measures[J]. Urban Mass Transit, 2011, 14(1): 106-109.(in Chinese)
[146] 陈佳明,赵 鑫,蔡宇天,等.地铁车轮轮缘根部滚动接触疲劳机理研究[J].铁道科学与工程学报,2020,17(9):2372-2380.
CHEN Jia-ming, ZHAO Xin, CAI Yu-tian, et al. Investigation on rolling contact fatigue mechanism of metro wheel flange root[J]. Journal of Railway Science and Engineering, 2020, 17(9): 2372-2380.(in Chinese)
[147] 温 邦.地铁车轮踏面滚动接触疲劳形成机理及对策研究[D].成都:西南交通大学,2017.
WEN Bang. Study on mechanism and countermeasure of rolling contact fatigue of metro tread[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[148] 梁喜仁,陶功权,陆文教,等.地铁钢轨滚动接触疲劳损伤研究[J].机械工程学报,2019,55(2):147-155.
LIANG Xi-ren, TAO Gong-quan, LU Wen-jiao, et al. Study on the rail rolling contact fatigue of subway[J]. Journal of Mechanical Engineering, 2019, 55(2): 147-155.(in Chinese)
[149] 张合吉,何泽寒,刘建桥,等.地铁异常磨耗车轮与辙叉接触分析[J].机械工程学报,2018,54(4):117-123.
ZHANG He-ji, HE Ze-han, LIU Jian-qiao, et al. Analysis of contact between frog and metro wheel tread with abnormal wear[J]. Journal of Mechanical Engineering, 2018, 54(4): 117-123.(in Chinese)
[150] ZHAI Wan-ming, JIN Xue-song, WEN Zen-feng, et al. Wear problems of high-speed wheel/rail systems: observations, causes, and countermeasures in China[J]. Applied Mechanics Reviews, 2020, 72(1): 060801.