|Table of Contents|

Mechanical property of new type of prefabricated inverted T-shape voided slab bridge(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2019年04期
Page:
12-23
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Mechanical property of new type of prefabricated inverted T-shape voided slab bridge
Author(s):
WU Qing-xiong12 HUANG Wan-kun13 WANG Qu1 CHEN Kang-ming1 CHEN Bao-chun1
(1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, Fujian, China; 2. Fujian Provincial Key Laboratory on Multi-Disasters Prevention and Mitigation in Civil Engineering, Fuzhou University, Fuzhou 350116, Fujian, China; 3. Key Laboratory of Fujian Universities for Engineering Structures, Fuzhou University, Fuzhou 350116, Fujian, China)
Keywords:
bridge engineering inverted T-shape voided slab bridge steel plate structure mechanical property full-scale model experiment nonlinear finite element
PACS:
U443.3
DOI:
-
Abstract:
To solve the disease of hinged joint in the existed prefabricated voided slab bridges, a new type of prefabricated inverted T-shape voided slab bridge was presented. The full-scale model experiment and the nonlinear finite element analysis on the inverted T-shape voided slab bridge with 8 m span were conducted. The stress, deflection and crack distributions of each component of inverted T-shape voided slab bridge subjected to the vehicle load were analyzed. The force mechanism and failure mode of inverted T-shape voided slab bridge were obtained. The mechanical behaviors of inverted T-shape voided slab bridge and voided slab bridge with gate-type steel bars were compared. The effectiveness of inverted T-shape voided slab solving the problem of cracking in hinged joint was verified. Research result shows that the failure process of inverted T-shape voided slab bridge can be divided into the elastic stage, cracking stage of voided slab, cracking stage of concrete in the field-cast structure layer, and yielding stage of tensile steel bars and steel plates. The inverted T-shape voided slab bridge have a good overall mechanical property, its ultimate capacity is 1.4 times of that of voided slab bridge with gate-type steel bars. The concrete in the tensile area above the Ω-shape steel plate is a weak part, forits tensile stress firstly reaching the limit 3.17 MPa. Due to the existences of Ω-shape and L-shape steel plates, when the concrete in the field-cast structure layer cracks, the normal and tangential bonding stresses of each junction surface as high as the field-cast structure layer will not exceed their limit 2.30 and 0.29 MPa, respectively, avoiding the bonding failure on the junction surface. Comparing with the mechanical property of voided slab bridge with gate-type steel bars, the inverted T-shape voided slab structure does not reduce the cracking load of voided slab, and the junction surface between the old and new concretes cracks after the cracking of voided slab. It can fundamentally solve the problem that the hinged joint cracks before the cracking of voided slab under the vehicle load. 2 tabs, 30 figs, 30 refs.

References:

[1] YAMANE T, TADROS M K, ARUMUGASAMY P. Short to medium span precast prestressed concrete bridges in Japan[J]. PCI Journal, 1994, 39(2): 74-100.
[2] HUSSEIN H H, SARGAND S M, KHOURY I, et al.
Environment-induced behavior of transverse tie bars in adjacent prestressed box-girder bridges with partial depth shear keys[J]. Journal of Performance of Constructed Facilities, 2017, 31(5): 04017074-1-13.
[3] HUSSEIN H H, SARGAND S M, AL RIKABI F T, et al. Experimental validation of optimized ultra-high-performance concrete shear key shape for precast pre-stressed adjacent box girder bridges[J]. Construction and Building Materials, 2018, 190: 178-190.
[4] 王 渠,吴庆雄,陈宝春.装配式空心板桥铰缝破坏模式试验研究[J].工程力学,2014,31(增):115-120.
WANG Qu, WU Qing-xiong, CHEN Bao-chun. Experimental study on failure mode of hinged joint in assembly voided slab bridge[J]. Engineering Mechanics, 2014, 31(S): 115-120.(in Chinese)
[5] 陈悦驰,吴庆雄,陈宝春.装配式空心板桥铰缝破坏模式有限元分析[J].工程力学,2014,31(增):51-58.
CHEN Yue-chi, WU Qing-xiong, CHEN Bao-chun. Failure mode of hinged joint in assembly voided slab bridge by finite element analysis[J]. Engineering Mechanics, 2014, 31(S): 51-58.(in Chinese)
[6] 吴庆雄,陈悦驰,陈康明.结合面底部带门式钢筋的铰接空心板破坏模式分析[J].交通运输工程学报,2015,15(5):15-25.
WU Qing-xiong, CHEN Yue-chi, CHEN Kang-ming. Failure mode analysis of hinged voided slab with gate-type steel rebars at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 15-25.(in Chinese)
[7] 王砚桐.高等级公路中“单板受力”现象及原因分析[J].公路交通技术,2004(4):29-32.
WANG Yan-tong. Phenomenon of single “beam bearing” in high-grade highways and analysis of its reasons[J]. Technology of Highway and Transport, 2004(4): 29-32.(in Chinese)
[8] HUCKELBRIDGE A A, EL-ESNAWI H, MOSES F. Shear key performance in multibeam box girder bridges[J]. Journal of Performance of Constructed Facilities, 1995, 9(4): 271-285.
[9] 项贻强,邢 骋,邵林海,等.横向加固空心板梁桥荷载横向分布计算[J].中国公路学报,2013,26(2):63-68,76.
XIANG Yi-qiang, XING Cheng, SHAO Lin-hai, et al. Calculating method and experimental research on lateral load distribution of transversely strengthened hollow slab bridge[J]. China Journal of Highway and Transport, 2013, 26(2): 63-68, 76.(in Chinese)
[10] 卫 军,李 沛,徐 岳,等.空心板铰缝协同工作性能影响因素分析[J].中国公路学报,2011,24(2):29-33.
WEI Jun, LI Pei, XU Yue, et al. Influencing factor analysis on coordinated working performance of hinge joint in hollow slab[J]. China Journal of Highway and Transport, 2011, 24(2): 29-33.(in Chinese)
[11] 冷艳玲,张劲泉,程寿山,等.装配式混凝土空心板梁桥单板受力问题的数值解析[J].公路交通科技,2013,30(5):63-66,73.
LENG Yan-ling, ZHANG Jin-quan, CHENG Shou-shan, et al. Numerical analysis on single plate loading effect of precast hollow plate girder bridge[J]. Journal of Highway and Transportation Research and Development, 2013, 30(5): 63-66, 73.(in Chinese)
[12] 卫 军,李 沛,张国法,等.空心板铰缝结构耐用性能的试验研究[J].华中科技大学学报(自然科学版),2012,40(1):72-76.
WEI Jun, LI Pei, ZHANG Guo-fa, et al. Experimental study on durability performance of hollow slab hinged joints[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(1): 72-76.(in Chinese)
[13] HANNA K, MORCOUS G, TADROS M K. Adjacent box girders without internal diaghragms or post-tensioned joints[J]. PCI Journal, 2011, 56(4): 51-64.
[14] LALL J, ALAMPALLI S, DICOCCO E F. Performance of full-depth shear keys in adjacent prestressed box beam bridges[J]. PCI Journal, 1998, 43(2): 72-79.
[15] SEMENDARY A A, WALSH K K, STEINBERG E P.
Early-age behavior of an adjacent prestressed concrete box-beam bridge containing UHPC shear keys with transverse dowels[J]. Journal of Bridge Engineering, 2017, 22(5): 04017007-1-14.
[16] HUSSEIN H H, SARGAND S M, STEINBERG E P. Shape optimization of UHPC shear keys for precast, prestressed, adjacent box-girder bridges[J]. Journal of Bridge Engineering, 2018, 23(4): 04018009-1-16.
[17] 闫卫红,付立军,赵 军.高性能灌浆料维修空心板桥铰缝的足尺试验研究[J].郑州大学学报(工学版),2016,37(4):77-81.
YAN Wei-hong, FU Li-jun, ZHAO Jun. Full-scale experimental study on hinge joint repair of hollow slab bridge with high-performance grouting material[J]. Journal of Zhengzhou University(Engineering Science), 2016, 37(4): 77-81.(in Chinese)
[18] YUAN J, GRAYBEAL B. Full-scale testing of shear key details for precast concrete box-beam bridges[J]. Journal of Bridge Engineering, 2016, 21(9): 04016043-1-14.
[19] EL-REMAILY A, TADROS M K, YAMANE T, et al. Transverse design of adjacent precast prestressed concrete box girder bridges[J]. PCI Journal, 1996, 41(4): 96-113.
[20] 李 莎,戎 贤,李鹏飞.简支空心板梁桥横向预应力加固方法及效果研究[J].郑州大学学报(工学版),2015,36(5):73-77.
LI Sha, RONG Xian, LI Peng-fei. Study on the method and results of simply supported hollow plate girder bridge reinforcement applied transverse prestressing[J]. Journal of Zhengzhou University(Engineering Science), 2015, 36(5): 73-77.(in Chinese)
[21] LI H T, DEEKS A J, LIU L X, et al. Moment transfer factors for column-supported cast-in-situ hollow core slabs[J]. Journal of Zhejiang University—Science A, 2012, 13(3): 165-173.
[22] 乔学礼.空心板铰缝破坏机理及防治措施研究[D].西安:长安大学,2008.
QIAO Xue-li. Study on the hinged joint destruct reasons of hollow plank girder bridge and the preventable measures[D]. Xi'an: Chang'an University, 2008.(in Chinese)
[23] 陈康明,吴庆雄,黄宛昆,等.结合面底部带门式钢筋的铰接空心板桥受力性能参数分析[J].公路交通科技,2016,33(8):65-75.
CHEN Kang-ming, WU Qing-xiong, HUANG Wan-kun, et al. Parameter analysis on mechanical property of hinged hollow slab bridge with gate-type steel bars at bottom of junction surface[J]. Journal of Highway and Transportation Research and Development, 2016, 33(8): 65-75.(in Chinese)
[24] 吴庆雄,黄宛昆,陈宝春,等.结合面底部设开孔钢板的铰接空心板力学性能[J].交通运输工程学报,2017,17(4):45-54.
WU Qing-xiong, HUANG Wan-kun, CHEN Bao-chun, et al. Mechanical property of hinged voided slab with perforated steel plates at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 45-54.(in Chinese)
[25] 吴庆雄,陈宝春,韦建刚.一种装配式倒T形板桥构造及其施工方法:中国,201410343911.4[P].2014-07-19.
WU Qing-xiong, CHEN Bao-chun, WEI Jian-gang. The structure and its construction method of the assembly reversed-T-shape slab beam bridge: China, 201410343911.4[P]. 2014-07-19.(in Chinese)
[26] 聂建国,王宇航.ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J].工程力学,2013,30(4):59-67,82.
NIE Jian-guo, WANG Yu-hang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67, 82.(in Chinese)
[27] 杨松霖,刁 波.超高性能钢纤维混凝土力学性能[J].交通运输工程学报,2011,11(2):8-13.
YANG Song-lin, DIAO Bo. Mechanical properties of ultra-high performance steel fiber reinforced concrete[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 8-13.(in Chinese)
[28] 刘 健.新老混凝土粘结的力学性能研究[D].大连:大连理工大学,2000.
LIU Jian. Study on the mechanics performance of adherence of young on old concrete[D]. Dalian: Dalian University of Technology, 2000.(in Chinese)
[29] 叶见曙,刘九生,俞 博,等.空心板混凝土铰缝抗剪性能试验研究[J].公路交通科技,2013,30(6):33-39.
YE Jian-shu, LIU Jiu-sheng, YU Bo, et al. Experiment on shear property of hinge joints of concrete hollow slab[J]. Journal of Highway and Transportation Research and Development, 2013, 30(6): 33-39.(in Chinese)
[30] 刘沛林.装配式钢筋混凝土简支板梁桥铰缝受力性能研究[D].北京:清华大学,2010.
LIU Pei-lin. Study on behaviors of hinge joints for fabricated reinforced concrete simply-supported plate girder bridges[D]. Beijing: Tsinghua University, 2010.(in Chinese)

Memo

Memo:
-
Last Update: 2019-09-03