|Table of Contents|

Optimal design of driving motor structural parameters for electric vehicle(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2016年06期
Page:
72-81
Research Field:
载运工具运用工程
Publishing date:
2016-12-20

Info

Title:
Optimal design of driving motor structural parameters for electric vehicle
Author(s):
WANG Jun-nian1 LIU Jian2 CHU Liang1 WANG Qing-nian1 WU Jian1
1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, Jilin, China; 2. Chang’an Automotive Engineering Institute, Chongqing 400023, China
Keywords:
electric vehicle driving motor ontology design optimal design structural parameter efficiency characteristic
PACS:
U469.72
DOI:
-
Abstract:
In the process of parameters matching study of driving motor for electric vehicle, an optimal design method for structural parameters of driving motor was proposed. Based on the basic given motor parameters, the influences of axial length, rotor outer diameter, winding turns, wire diameter, pole arc factor, and permanent magnet thickness on motor efficiency were analyzed. The mapping relationships between the main ontology structural parameters and the efficiency characteristic of the motor were established. The procedures of the preliminary design and the optimal design for the motor ontology structural parameters were proposed. Based on the optimized motor efficiency characteristic, the economic performance of whole vehicle was simulated and verified by using the forward-facing simulation vehicle model under 4 typical working conditions. Simulation result shows that in the aspect of output characteristic, compared with the initial motor, the torque ripple of optimized motor reduces obviously, the value in constant torque area reduces to 14%, the value in constant power area reduces to no more than 40%, and the top efficiency increases to 94%. In the aspect of whole vehicle economy performance, the energy consumptions per kilometer of optimized motor for whole vehicle reduce by about 7.1%, 6.7%, 4.1%, and 2.9% under NEDC、UDDS、JC08、1015 working conditions, and the average value is 5.2%. Under the premise of meeting the driving requirements, the operating point distribution in higher efficiency range is improved, and the average efficiency in the area with higher rotational speed and lower torque rises significantly by using the proposed optimal design method. The design method can better improve the driving efficiency of motor, and can supply the theoretical supervision for the optimal design of driving motor ontology structural parameters according to the requirement of vehicle performance. 5 tabs, 22 figs, 25 refs.

References:

[1] 赵 轩,马 建,汪贵平.基于制动驾驶意图辨识的纯电动客车复合制动控制策略[J].交通运输工程学报,2014,14(4):64-75.
ZHAO Xuan, MA Jian, WANG Gui-ping. Composite braking control strategy of pure electric bus based on brake driving intention recognition[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 64-75.(in Chinese)
[2] 连 静,韩 虎,李琳辉,等.基于传动系统效率最优的混合动力汽车控制策略研究[J].大连理工大学学报,2013,53(5):666-670.
LIAN Jing, HAN Hu, LI Lin-hui, et al. Research on HEV control strategy based on optimal efficiency of drive system[J]. Journal of Dalian University of Technology, 2013, 53(5):666-670.(in Chinese)
[3] EMADI A, LEE Y J, RAJASHEKARA K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2237-2245.
[4] LASKARIS K I, KLADAS A G. Internal permanent magnet motor design for electric vehicle drive[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 138-145.
[5] 星野昭広,磯部真一, 森本雅之, など.特定用途指向型モータの一設計法[J].電気学会論文誌,2003,123(11):1262-1268.
HOSHINO A, ISOBE S I, MORIMOTO M, et al. A design procedure for the applications—specific electric motors[J]. IEEJ Transactions on Industry Applications, 2003, 123(11):1262-1268.
[6] 赤津観,涌井伸二,有満稔.要求出力特性を満足する永久磁石同期電動機自動設計手法[J].電気学会論文誌,2004,124(9):946-955.
AKATSU K, WAKUI S, ARIMITSU M. Automatic design method for PM motor which satisfies the output NT requirements[J]. IEEJ Transactions on Industry Applications, 2004, 124(9): 946-955.
[7] SCHOFIELD N, GIRAUD-AUDINE C. Design procedure for brushless PM traction machines for electric vehicleapplications[C]∥IEEE. Proceedings of 2005 International Conference on Electric Machines and Drives. New York: IEEE, 2005: 1788-1792.
[8] 黄万友,程 勇,纪少波,等.变工况下电动汽车驱动系统效率优化控制[J].电机与控制学报,2012,16(3):53-59.
HUANG Wan-you, CHENG Yong, JI Shao-bo, et al. The optimization of EV powertrain’s efficiency control strategy under dynamic operation condition[J]. Electric Machines and Control, 2012, 16(3): 53-59.(in Chinese)
[9] 李 珂,张承慧,崔纳新.电动汽车用感应电机效率优化控制策略的对比研究[C]∥IEEE.第8届智能控制与自动化世界年会论文集.纽约:IEEE,2010:1882-1887.
LI Ke, ZHANG Cheng-hui, CUI Na-xin. Comparative study of induction motor efficiency optimization control strategy for electric vehicle[C]∥IEEE. Proceedings of 8th World Congress on Intelligent Control and Automation. New York: IEEE, 2010:1882-1887.(in Chinese)
[10] 郭 伟,张承宁.车用永磁同步电机的铁耗与瞬态温升分析[J].电机与控制学报,2009,13(1):83-87,92.
GUO Wei, ZHANG Cheng-ning. Iron losses and transient temperature analysis of the permanent magnet synchronous motor for electric vehicles[J]. Electric Machines and Control, 2009, 13(1): 83-87, 92.(in Chinese)
[11] 陈阳生,王文中.在恒转矩和弱磁控制状态下的各种永磁同步电机负载铁耗[J].电工技术学报,2007,22(9):45-50.
CHEN Yang-sheng, WANG Wen-zhong. Iron loss in PM synchronous motors under constant torque and field-weakening control[J]. Transactions of China Electrotechnical Society, 2007, 22(9): 45-50.(in Chinese)
[12] OKI S, ISHIKAWA S, IKEMI T. Development of high-power and high-efficiency motor for a newly developed electric vehicle[J]. SAE International Journal of Alternative Powertrains, 2012, 5(1): 104-111.
[13] SATO Y, ISHIKAWA S, OKUBO T, et al. Development of high response motor and inverter system for the Nissan LEAF electric vehicle [C]∥SAE. SAE 2011 World Congress and Exhibition. Detroit: SAE International, 2011: 1-8.
[14] SHIMIZU H, OKUBO T, HIRANO I, et al. Development of an integrated electrified powertrain for a newly developed electric vehicle[C]∥SAE. SAE 2013 World Congress and Exhibition. Detroit: SAE International, 2013: 1-8.
[15] NAKADA T, ISHIKAWA S, OKI S. Development of an electric motor for a newly developed electric vehicle[C]∥SAE. SAE 2014 World Congress and Exhibition. Detroit: SAE International, 2014: 1-7.
[16] ARAI K, HIGASHI K, IIYAMA T, et al. High power density motor and inverter for RWD hybrid vehicles[C]∥SAE. SAE 2011 World Congress and Exhibition. Detroit: SAE International, 2011: 9-19.
[17] NONAKA T, MAKINO S, HIRAYAMA M, et al. Efficiency evaluation of new variable magnetic flux motor: development of EV motor with wide range high-efficiency drive[C]∥SAE. SAE 2011 World Congress and Exhibition. Detroit: SAE International, 2011: 20-23.
[18] BERR F L, ABDELLI A, BENLAMINE R. Sensitivity study on the design methodology of an electric vehicle[C]∥SAE. SAE 2012 World Congress and Exhibition. Detroit: SAE International, 2012: 1-13.
[19] ABDELLI A, BERR F L, BENLAMINE R. Efficient design methodology of an all-electric vehicle powertrain using multi-objective genetic optimization algorithm[C]∥SAE. SAE 2013 World Congress and Exhibition. Detroit: SAE International, 2013: 9-21.
[20] KATO S. Design optimization of interior permanent magnet synchronous motors for HEV and EV[C]∥SAE. SAE 2010 World Congress and Exhibition. Detroit: SAE International, 2010: 1-8.
[21] LAZARI P, WANG Jia-bin, CHEN Liang. A computationally efficient design technique for electric-vehicle traction machines[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3203-3213.
[22] WANG Jia-bin, YUAN Xi-bo, ATALLAH K. Design optimization of a surface-mounted permanent-magnet motor with concentrated windings for electric vehicle applications[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3):1053-1064.
[23] 吴 雪.纯电动轿车动力系统参数匹配方法研究[D].长春:吉林大学,2013.
WU Xue. Research on powertrain parameters design of pure electric car[D]. Changchun: Jilin University, 2013.(in Chinese)
[24] 初 亮,张培志,林婷婷.纯电动轿车模式识别及模式切换策略[J].华中科技大学学报:自然科学版,2014,42(6):12-16.
CHU Liang, ZHANG Pei-zhi, LIN Ting-ting. Study on mode recognition and mode switching strategy of electric vehicle[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(6): 12-16.(in Chinese)
[25] 王军年,刘德春,张运昌,等.新型双电机构型纯电动汽车节能潜力分析[J].吉林大学学报:工学版,2016,46(1):28-34.
WANG Jun-nian, LIU De-chun, ZHANG Yun-chang, et al. Analysis of energy conservation potential of novel pure electric vehicle with dual motors configuration[J]. Journal of Jilin University: Engineering and Technology Edition, 2016, 46(1): 28-34.(in Chinese)

Memo

Memo:
-
Last Update: 2016-12-20