[1] 彭宏勤,张国伍.未来城市交通及其对未来城市发展影响[J].交通运输系统工程与信息,2020,20(1):2-5.
PENG Hong-qin, ZHANG Guo-wu. Future urban traffic and its influence on cities development[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 2-5.(in Chinese)
[2] LIU Yang, LYU Cheng, LIU Zhi-yuan, et al. Exploring a large-scale multi-modal transportation recommendation system[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103070.
[3] DAS D, SAHOO L, DATTA S. A survey on recommendation system[J]. International Journal of Computer Applications, 2017, 160(7): 6-10.
[4] ZHANG Qian, LU Jie, JIN Yao-chu. Artificial intelligence in recommender systems[J]. Complex and Intelligent Systems, 2021, 7(1): 439-457.
[5] CUI Ge, LUO Jun, WANG Xin. Personalized travel route recommendation using collaborative filtering based on GPS trajectories[J]. International Journal of Digital Earth, 2018, 11(3): 284-307.
[6] WEN Y T, YEO J Y, PENG W C, et al. Efficient keyword-aware representative travel route recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8): 1639-1652.
[7] 孙全明,常 磊,马 铖,等.基于图嵌入和CaGBDT的多模态出行推荐[J].北京邮电大学学报,2021,44(5):81-87,106.
SUN Quan-ming, CHANG Lei, MA Cheng, et al. Multi-modal transportation recommendation based on graph embedding and CaGBDT[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(5): 81-87, 106.(in Chinese)
[8] 杨 敏,李宏伟,任怡凤,等.基于旅客异质性画像的公铁联程出行方案推荐方法[J].清华大学学报(自然科学版),2022,62(7):1220-1227.
YANG Min, LI Hong-wei, REN Yi-feng, et al. Road-rail intermodal travel recommendations based on a passenger heterogeneity profile[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1220-1227.(in Chinese)
[9] SONG Xiang, DANAF M, ATASOY B, et al. Personalized menu optimization with preference updater: a Boston case study[J]. Transportation Research Record, 2018, 2672(8): 599-607.
[10] BALBONTIN C, HENSHER D A, COLLINS A T. How to better represent preferences in choice models: the contributions to preference heterogeneity attributable to the presence of process heterogeneity[J]. Transportation Research Part B: Methodological, 2019, 122: 218-248.
[11] GODDARD M. The EU general data protection regulation(GDPR): European regulation that has a global impact[J]. International Journal of Market Research, 2017, 59(6): 703-705.
[12] YANG Qiang, LIU Yang, CHEN Tian-jian, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19.
[13] JIAN Wei-tao, CHEN Kun-xu, HE Jun-shu, et al. A federated personal mobility service in autonomous transportation systems[J]. Mathematics, 2023, 11(12): 2693.
[14] LIU Sheng, CHEN Qi-yang, YOU Lin-lin. Fed2A: federated learning mechanism in asynchronous and adaptive modes[J]. Electronics, 2022, 11(9): 1393.
[15] WANG Si-hua, CHEN Ming-zhe, YIN Chang-chuan, et al. Federated learning for task and resource allocation in wireless high-altitude balloon networks[J]. IEEE Internet of Things Journal, 2021, 8(24): 17460-17475.
[16] CHENG Ke-wei, FAN Tao, JIN Yi-lun, et al. Secureboost: a lossless federated learning framework[J]. IEEE Intelligent Systems, 2021, 36(6): 87-98.
[17] ZHU Hang-yu, JIN Yao-chu. Multi-objective evolutionary federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(4): 1310-1322.
[18] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]∥SINGH A, ZHU J. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Brookline: Microtome Publishing, 2017: 1273-1282.
[19] GELFAND A E. Gibbs sampling[J]. Journal of the American Statistical Association, 2000, 95(452): 1300-1304.
[20] MCFADDEN D. The measurement of urban travel demand[J]. Journal of Public Economics, 1974, 3(4): 303-328.
[21] HENSHER D A, GREENE W H. The mixed logit model: the state of practice[J]. Transportation, 2003, 30: 133-176.
[22] SONG Xiang. Personalization of future urban mobility[D]. Cambridge: Massachusetts Institute of Technology, 2018.
[23] MCFADDEN D, TRAIN K. Mixed MNL models for discrete response[J]. Journal of Applied Econometrics, 2000, 15(5): 447-470.
[24] TRAIN K. Mixed logit with a flexible mixing distribution[J]. Journal of Choice Modelling, 2016, 19: 40-53.
[25] LEE L F. Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results[J]. Journal of Econometrics, 1997, 82(1): 1-35.
[26] BANSAL P, KRUEGER R, BIERLAIRE M, et al. Bayesian estimation of mixed multinomial logit models: advances and simulation-based evaluations[J]. Transportation Research Part B: Methodological, 2020, 131: 124-142.
[27] CHIB S, GREENBERG E. Understanding the metropolis-Hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335.
[28] DANAF M, BECKER F, SONG Xiang, et al. Online discrete choice models: applications in personalized recommendations[J]. Decision Support Systems, 2019, 119: 35-45.
[29] BEN-AKIVA M, MCFADDEN D, TRAIN K. Foundations of stated preference elicitation: consumer behavior and choice-based conjoint analysis[J]. Foundations and Trends in Econometrics, 2019, 10(1/2): 1-144.
[30] DINH C T, TRAN N H, NGUYEN M N, et al. Federated learning over wireless networks: convergence analysis and resource allocation[J]. IEEE/ACM Transactions on Networking, 2020, 29(1): 398-409.