[1] 张 博,刘秀波.基于机器视觉的圆斑状钢轨擦伤检测算法[J].铁道建筑,(2022-12-06)[2023-01-10]. https:∥kns.cnki.net/kcms/detail∥11.2027.U.20221205.1837.005.html.
ZHANG Bo, LIU Xiu-bo. Detection algorithm of circular spot rail squat based on machine vision[J]. Railway Engineering,(2022-12-06)[2023-01-10]. https:∥kns.cnki.net/kcms/detail∥11.2027.U.20221205.1837.005.html.(in Chinese)
[2] 常崇义,蔡园武 李 兰,等.高速轮轨黏着机理的研究进展及其应用[J].中国铁路,2017(11):24-32.
CHANG Chong-yi, CAI Yuan-wu, LI Lan, et al. Research progress and application of the mechanism of high-speed wheel rail adhesion[J]. China Railway, 2017(11): 24-32.(in Chinese)
[3] 魏堂建,刘林芽,李纪阳,等.客运专线钢轨擦伤原因分析[J].铁道科学与工程学报,2015,12(3):489-495.
WEI Tang-jian, LIU Lin-ya, LI Ji-yang, et al. Analysis the reason of passenger line's rail scratch[J]. Journal of Railway Science and Engineering, 2015, 12(3): 489-495.(in Chinese)
[4] 翟婉明,赵春发.现代轨道交通工程科技前沿与挑战[J].西南交通大学学报,2016,51(2):209-226.
ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering [J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226.(in Chinese)
[5] 李 闯,张银花,田常海,等.高速铁路钢轨服役状态及病害整治研究[J].铁道建筑,2020,60(8):126-129,142.
LI Chuang, ZHANG Yin-hua, TIAN Chang-hai, et al. Study on rail service status and disease treatment of rail for high speed railway[J]. Railway Engineering, 2020, 60(8): 126-129, 142.(in Chinese)
[6] DENG Xiang-yun, QIAN Zhi-wei, LI Zi-li, et al. Investigation of the formation of corrugation-induced rail squats based on extensive field monitoring[J]. International Journal of Fatigue, 2018, 112: 94-105.
[7] ZHOU Yan, MO Ji-liang, CAI Zhen-bing, et al. Third-body and crack behavior in white etching layer induced by sliding-rolling friction[J]. Tribology International, 2019, 140: 105882.
[8] LIAN Qing-lin, ZHU Hong-tao, DENG Guan-yu, et al.
Evolution of thermally induced white etching layer at rail surface during multiple wheel/train passages[J]. International Journal of Fatigue, 2022, 159: 106799.
[9] XU Tian, ZENG Dong-fang, LU Lian-tao, et al. Numerical investigation of the formation of white etching layer in wheel steel with high Si and Mn contents[J]. Engineering Failure Analysis, 2021, 122: 105286.
[10] GUTIÉRREZ GUZMÁN F, SOUS C, VAN LIER H, et al. An energetic approach for the prognosis of thermally induced white etching layers in bearing steel 100CrMn6[J]. Tribology International, 2020, 143: 106096.
[11] PAN Rui, REN Rui-ming, CHEN Chun-huan, et al. The
microstructure analysis of white etching layer on treads of rails[J]. Engineering Failure Analysis, 2017, 82: 39-46.
[12] 董永刚,仪 帅,黄鑫磊,等.重载列车紧急制动过程车轮踏面疲劳裂纹萌生寿命预测[J].中国铁道科学,2021,42(5):123-131.
DONG Yong-gang, YI Shuai, HUANG Xin-lei, et al. Prediction of fatigue crack initiation life of wheel tread during emergency braking of heavy haul train[J]. China Railway Science, 2021, 42(5): 123-131.(in Chinese)
[13] WU Jun, PETROV R H, NAEIMI M, et al. Laboratory
simulation of martensite formation of white etching layer in rail steel[J]. International Journal of Fatigue, 2016, 91: 11-20.
[14] LIAN Qing-lin, DENG Guan-yu, AL-JUBOORI A, et al. Crack propagation behavior in white etching layer on rail steel surface[J]. Engineering Failure Analysis, 2019, 104: 816-829.
[15] BERNSTEINER C, MÜLLER G, MEIERHOFER A, et al. Development of white etching layers on and experiments rails: simulations and experiments[J]. Wear, 2016, 366/367: 116-122.
[16] LIAN Qing-lin, DENG Guan-yu, KIET-TIEU A, et al. Thermo-mechanical coupled finite element analysis of rolling contact fatigue and wear properties of a rail steel under different slip ratios[J]. Tribology International, 2020, 141: 105943.
[17] NAEIMI M, LI Shao-guang, LI Zi-li, et al. Thermomechanical
analysis of the wheel-rail contact using a coupled modelling procedure[J]. Tribology International, 2018, 117: 250-260.
[18] WU Ya-ping, WEI Yun-peng, LIU Yang, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials[J]. Applied Thermal Engineering, 2017, 115: 455-462.
[19] 伏培林,丁 立,赵吉中,等.考虑材料温度相关性的二维轮轨弹塑性滑动接触温升分析[J].力学学报,2020,52(5):1245-1254.
FU Pei-lin, DING Li, ZHAO Ji-zhong, et al. Frictional temperature analysis of two-dimensional elasto-plastic wheel-rail sliding contact with temperature-dependent material properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1245-1254.(in Chinese)
[20] 刘 洋,蒋 硕,吴亚平,等.剥离掉块对轮轨滑动接触热弹塑性的影响[J].交通运输工程学报,2016,16(2):46-55.
LIU Yang, JIANG Shuo, WU Ya-ping, et al. Effects of spallation on rail thermo-elasto-plasticity in wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 46-55.(in Chinese)
[21] 杨新文,顾少杰,周顺华,等.30 t轴重重载铁路轮轨滑动接触引起的钢轨热相变分析[J].铁道学报,2016,38(7):84-90.
YANG Xin-wen, GU Shao-jie, ZHOU Shun-hua, et al. Analysis of rail thermal phase transformation due to wheel-rail sliding contact for heavy-haul railway with 30 t axle-load[J]. Journal of the China Railway Society, 2016, 38(7): 84-90.(in Chinese)
[22] 王 伟,王彩芸,郭 俊,等.滚滑工况下轮轨摩擦生热分析[J].机械设计与制造,2012(6):135-137.
WANG Wei, WANG Cai-yun, GUO Jun, et al. Analysis of the frictional heating of wheel-rail in rolling-sliding case[J]. Machinery Design and Manufacture, 2012(6): 135-137.(in Chinese)
[23] 文永蓬,徐小峻,尚慧琳,等.考虑热力耦合的轨道车辆车轮建模与仿真[J].交通运输工程学报,2016,16(5):30-41.
WEN Yong-peng, XU Xiao-jun, SHANG Hui-lin, et al. Modeling and simulation of railway vehicle wheel considering thermo-mechanical coupling[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 30-41.(in Chinese)
[24] 王 平,刘奕斌,高 原,等.表面选区强化对钢轨波磨处轮轨滚动接触行为的影响[J].铁道学报,2020,42(5):105-112.
WANG Ping, LIU Yi-bin, GAO yuan, et al. A study on influence of surface strengthening on wheel-rail rolling contact behavior at rail corrugation[J]. Journal of the China Railway Society, 2020, 42(5): 105-112.(in Chinese)
[25] 马超智,辛 涛,高 亮,等.基于改进摩擦功模型的轮轨滚动接触磨耗研究[J].铁道学报,2019,41(12):49-55.
MA Chao-zhi, XIN Tao, GAO Liang, et al. Study on wear of wheel-rail rolling contact based on improved friction work model[J]. Journal of the China Railway Society, 2019, 41(12): 49-55.(in Chinese)
[26] 连青林.钢轨马氏体白蚀层相变及疲劳特性研究[D].北京:北京交通大学,2019.
LIAN Qing-lin. Study on phase transformation and fatigue properties of martensite white etching layer of railway rail[D]. Beijing: Beijing Jiaotong University, 2019.(in Chinese)
[27] SU Yun-shuai, LI Shu-xin, LU Si-yuan, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue[J]. International Journal of Fatigue, 2017, 105: 160-168.
[28] 沈明学,刘 鹏,周 琰,等.轮轨界面摩擦学转变结构层特性及其研究进展[J].摩擦学学报,2021,41(5):773-788.
SHEN Ming-xue, LIU Peng, ZHOU Yan, et al. Characteristics of tribological transition layers at wheel-rail interface and its research progress[J]. Tribology, 2021, 41(5): 773-788.(in Chinese)
[29] AL-JUBOORI A, ZHU H, WEXLER D, et al. Characterisation
of white etching layers formed on rails subjected to different traffic conditions[J]. Wear, 2019, 436/437: 202998.
[30] 张 军,王雪萍,马 贺.第三介质对轮轨最大静摩擦因数影响的试验[J].机械工程学报,2018,54(18):123-128.
ZHANG Jun, WANG Xue-ping, MA He. Experimental study on the influence of the third medium on the wheel/rail maximum static friction coefficient[J]. Journal of Mechanical Engineering, 2018, 54(18): 123-128.(in Chinese)