[1] 朱 姣,刘敬贤,陈 笑,等.基于轨迹的内河船舶行为模式挖掘[J].交通信息与安全,2017,35(3):107-116,132.
ZHU Jiao, LIU Jing-xian, CHEN Xiao, et al. Behavior pattern mining of inland vessels based on trajectories[J]. Journal of Transport Information and Safety, 2017, 35(3): 107-116, 132.(in Chinese)
[2] 文元桥,张义萌,黄 亮,等.基于语义的船舶行为动态推理机制[J].中国航海,2019,42(3):34-39,50.
WEN Yuan-qiao, ZHANG Yi-meng, HUANG Liang, et al. Mechanism of ship behavior dynamic reasoning based on semantics[J]. Navigation of China, 2019, 42(3): 34-39, 50.(in Chinese)
[3] TU En-mei, ZHANG Guang-hao, RACHMAWATI L, et al.
Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(5): 1559-1582.
[4] LEI D, FLORIS G, PENTTI K. Review and analysis of
methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data[J]. Reliability Engineering and System Safety, 2020, 200: 106933.
[5] YANG Dong, WU Ling-xiao, WANG Shuai-an, et al. How big data enriches maritime research—a critical review of automatic identification system(AIS)data applications[J]. Transport Reviews, 2019, 39(6): 755-773.
[6] 甄 荣,邵哲平,潘家财.基于AIS数据的船舶行为特征挖掘与预测:研究进展与展望[J].地球信息科学学报,2021,23(12):2111-2127.
ZHEN Rong, SHAO Zhe-ping, PAN Jia-cai. Advance in character mining and prediction of ship behavior based on AIS data[J]. Journal of Geo-Information Science, 2021, 23(12): 2111-2127.(in Chinese)
[7] 陶 阳,毛 喆,盛 萍,等.基于船舶行为的武汉长江大桥水域货船通航规律研究[J].交通信息与安全,2018,36(1):49-56.
TAO Yang, MAO Zhe, SHENG Ping, et al. A study of regularity of navigation patterns of cargo ships at the waterways near Wuhan Yangtze River Bridge based on ship maneuvering behavior[J]. Journal of Transport Information and Safety, 2018, 36(1): 49-56.(in Chinese)
[8] WU Xing, MEHTA A L, ZALOOM V A, et al. Analysis of waterway transportation in Southeast Texas waterway based on AIS data[J]. Ocean Engineering, 2016, 121: 196-209.
[9] XIAO Fang-liang, LIGTERINGEN H, VAN-GULIJK C, et al. Comparison study on AIS data of ship traffic behavior[J]. Ocean Engineering, 2015, 95: 84-93.
[10] 甄 荣,邵哲平,潘家财,等.基于 AIS 信息的航道内船舶速度分布统计分析[J].集美大学学报(自然科学版),2014,19(4):274-278.
ZHEN Rong, SHAO Zhe-ping, PAN Jia-cai, et al. Statistical analysis of distribution of ship speed within the fairway based on AIS data[J]. Journal of Jimei University(Natural Science), 2014, 19(4): 274-278.(in Chinese)
[11] HUANG Liang, WEN Yuan-qiao, GUO Wei, et al. Mobility pattern analysis of ship trajectories based on semantic transformation and topic model[J]. Ocean Engineering, 2020, 201: 107092.
[12] 朱飞祥,张英俊,高宗江.基于数据挖掘的船舶行为研究[J].中国航海,2012,35(2):50-54.
ZHU Fei-xiang, ZHANG Ying-jun, GAO Zong-jiang. Research on ship behaviors based on data mining[J]. Navigation of China, 2012, 35(2): 50-54.(in Chinese)
[13] ZHANG Wei-bin, GOERLANDT F, KUJALA P, et al. An advanced method for detecting possible near miss ship collisions from AIS data[J]. Ocean Engineering, 2016, 124: 141-156.
[14] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
[15] WANG Sheng, BAO Zhi-feng, CULPEPPER J S, et al. A survey on trajectory data management, analytics, and learning[J]. ACM Computing Surveys(CSUR), 2021, 53(2): 1-36.
[16] LI Li, LI Xin, YANG Yuan, et al. Indoor tracking trajectory data similarity analysis with a deep convolutional autoencoder[J]. Sustainable Cities and Society, 2019, 45: 588-595.
[17] WANG Wei, XIA Feng, NIE Han-song, et al. Vehicle
trajectory clustering based on dynamic representation learning of internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3567-3576.
[18] ZHOU Yang, DAAMEN W, VELLINGA T, et al. Ship
classification based on ship behavior clustering from AIS data[J]. Ocean Engineering, 2019, 175(1): 176-187.
[19] YAO Di, ZHANG Chao, ZHU Zhi-hua, et al. Trajectory
clustering via deep representation learning[C]∥IEEE. 2017 International Joint Conference on Neural Networks(IJCNN). New York: IEEE, 2017: 3880-3887.
[20] ZHANG Rui, XIE Peng, JIANG Huang-bo, et al. Clustering noisy trajectories via robust deep attention auto-encoders[C]∥IEEE. 2019 20th IEEE International Conference on Mobile Data Management(MDM). New York: IEEE, 2019: 63-71.
[21] 谢 鹏.基于深度学习的轨迹数据中移动模式发现方法研究[D].武汉:武汉理工大学,2019.
XIE Peng. Research on moving pattern discovery method in trajectory data based on deep learning[D]. Wuhan: Wuhan University of Technology, 2019.(in Chinese)
[22] 常吉亮,谢 磊,赵建伟,等. 基于VAE-LSTM模型的航迹异常检测算法[J].交通信息与安全,2020,38(6):1-8.
CHANG Ji-liang, XIE Lei, ZHAO Jian-wei, et al. An anomaly detection algorithm for ship trajectory data based on VAE-LSTM model[J]. Journal of Transport Information and Safety, 2020, 38(6): 1-8.(in Chinese)
[23] WEN Yuan-qiao, ZHANG Yi-meng, HUANG Liang, et al. Semantic modelling of ship behavior in harbor based on ontology and dynamic Bayesian network[J]. ISPRS International Journal of Geo-Information, 2019, DOI:10.3390/ijgi8030107.
[24] PARENT C, SPACCAPIETRA S, RENSO C, et al. Semantic trajectories modeling and analysis[J]. ACM Computing Surveys(CSUR), 2013, 45(4): 1-32.
[25] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient
estimation of word representations in vector space[J]. arXiv, 2013, Bibcode: 2013arXiv1301.3781M.
[26] 甄 荣,金永兴,胡勤友,等.基于AIS信息和BP神经网络的船舶航行行为预测[J].中国航海,2017,40(2):6-10.
ZHEN Rong, JIN Yong-xing, HU Qin-you, et al. Vessel behavior prediction based on AIS data and BP neural network[J]. Navigation of China, 2017, 40(2): 6-10.(in Chinese)
[27] 刘 娇,史国友,杨学钱,等.基于DE-SVM的船舶航迹预测模型[J].上海海事大学学报,2020,41(1):34-39,115.
LIU Jiao, SHI Guo-you, YANG Xue-qian, et al. Ship trajectory prediction model based on DE-SVM[J]. Journal of Shanghai Maritime University, 2020, 41(1): 34-39, 115.(in Chinese)
[28] FANG Zhi-xiang, YU Hong-chu, KE Ran-xuan, et al. Automatic identification system-based approach for assessing the near-miss collision risk dynamics of ships in ports[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(2): 534-543.
[29] LIN J, KEOGH E, WEI L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107-144.
[30] KRASNOV F, SEN A. The number of topics optimization: clustering approach[J]. Machine Learning and Knowledge Extraction, 2019, 1(1): 416-426.
[31] WANG Wen-shuo, RAMESH A, ZHU Jia-cheng, et al. Clustering of driving encounter scenarios using connected vehicle trajectories[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(3): 485-496.