|Table of Contents|

Multi-parametric evaluation method of aircraft wake vortex encounter safety in cruise phase(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2022年04期
Page:
295-305
Research Field:
交通运输规划与管理
Publishing date:

Info

Title:
Multi-parametric evaluation method of aircraft wake vortex encounter safety in cruise phase
Author(s):
WEI Zhi-qiang1 LI Xiao-chen2
(1. College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China; 2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China)
Keywords:
aviation safety wake vortex encounter multi-parametric evaluation wake separation high-altitude cruise flight safety
PACS:
V212.11
DOI:
10.19818/j.cnki.1671-1637.2022.04.023
Abstract:
The response mechanism of aircraft after encountering wake vortices was analyzed. Considering the factors such as roll damping characteristics and handling qualities of aircraft, the calculation model for the roll angular acceleration of aircraft was constructed. Due to the change in the flight path and attitude after wake vortex encounters, several disturbance parameters were selected to evaluate the safety of wake vortex encounters, and the calculation model for aircraft dynamics parameters was built. For the determination of the acceptable safety level of wake vortex encounters, the computation data of the disturbance parameters for wake vortex encounters of aircraft combinations at medium and low altitudes were obtained on the basis of the current domestic standard of wake separation. The evolutionary characteristics of the flow fields of wake vortices at high altitudes were analyzed, the wake safety separation at high altitudes was studied, and the influence of different factors on flight safety was analyzed. Research results show that compared with the results at medium and low altitudes, the flow fields of wake vortices at high altitudes are characterized by larger initial strength and duration. Beyond the flight altitude of 9 000 m, the speed of wake vortex dissipation increases with the rise in height. When the leading aircraft is a super heavy aircraft or heavy aircraft, flight safety cannot be guaranteed by current wake separation, and the safety separation should increase by 1.4-2.1 km. When the flight altitude is beyond 13 800 and 14 400 m, the severity of wake vortex encounters reduces. When the leading aircraft is a general heavy aircraft, the wake safety separation can reduces by 1.5 km to improve airspace utilization efficiency. In the case of a medium-size leading aircraft, the safety of wake vortex encounters is high, but due to the limitation of the minimum radar separation, the distance between the leading and following aircraft cannot further reduce. A lower flight speed of the following aircraft is accompanied by more serious wake vortex encounters. When the initial roll bank angle of the following aircraft raises from 0 to 10°, the safety separation of wake vortices raises by 1.3 km, an increase of about 8.61%. It can be seen that the use of multiple disturbance parameters is effective in evaluating the severity of high-altitude wake vortex encounters. 4 tabs, 15 figs, 30 refs.

References:

[1] 徐肖豪,赵鸿盛,王振宇.尾流间隔缩减技术综述[J].航空学报,2010,31(4):655-662.
XU Xiao-hao, ZHAO Hong-sheng, WANG Zhen-yu. Overview of wake vortex separation reduction systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 655-662.(in Chinese)
[2] 魏志强,徐肖豪.飞机尾涡流场的建模与仿真计算研究[J].交通运输系统工程与信息,2010,10(4):186-191.
WEI Zhi-qiang, XU Xiao-hao. Modeling and simulating of flow field for aircraft wake vortex[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 186-191.(in Chinese)
[3] SCHUMANN U, SHARMAN R. Aircraft wake-vortex
encounter analysis for upper levels[J]. Journal of Aircraft, 2015, 52(4): 1277-1285.
[4] HOLZÄPFEL F. Probabilistic two-phase wake vortex decay
and transport model[J]. Journal of Aircraft, 2003, 40(2): 323-331.
[5] STEPHAN A, SCHRALL J, HOLZÄPFEL F. Numerical
optimization of plate-line design for enhanced wake-vortex decay[J]. Journal of Aircraft, 2017, 54(3): 995-1010.
[6] SARPKAYA T. Decay of wake vortices of large aircraft[J]. AIAA Journal, 1998, 36(9): 1671-1679.
[7] PROCTOR F H, HAMILTON D W, SWITZER G F. TASS driven algorithms for wake prediction[C]∥AIAA. 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 1073.
[8] CAMPOS L M B C, MARQUES J M G. On an analytical
model of wake vortex separation of aircraft[J]. The Aeronautical Journal, 2016, 120(1232): 1534-1565.
[9] SPEIJKER L J P, VIDAL A, BARBARESCO F, et al. ATC-wake: integrated wake vortex safety and capacity system[J]. Journal of Air Traffic Control, 2007, 49(1): 17-32.
[10] DE VISSCHER I, LONFILS T, WINCKELMANS G. Fast-time modeling of ground effects on wake vortex transport and decay[J]. Journal of Aircraft, 2013, 50(5): 1514-1525.
[11] LUCKNER R, HÖHNE G, FUHRMANN M. Hazard
criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687.
[12] 魏志强,屈秋林,刘 薇,等.飞机尾涡流场参数的仿真计算方法研究综述[J].空气动力学学报,2019,37(1):33-42.
WEI Zhi-qiang, QU Qiu-lin, LIU Wei, et al. Review on the artificial calculating methods for aircraft wake vortex flow field parameters[J]. Acta Aerodynamica Sinica, 2019, 37(1): 33-42.(in Chinese)
[13] 魏志强,李志远,刘 薇.侧风影响下的飞机尾流强度消散与涡核运动[J].空军工程大学学报(自然科学版),2017,18(6):27-33.
WEI Zhi-qiang, LI Zhi-yuan, LIU Wei. Research on aircraft wake vortex strength dissipation and vortex motion under crosswind impact[J]. Journal of Air Force Engineering University(Natural Science Edition), 2017, 18(6): 27-33.(in Chinese)
[14] 朱 睿,刘锦生,刘志荣,等.新概念机翼尾流特性实验[J].航空学报,2017,38(4):120250.
ZHU Rui, LIU Jin-sheng, LIU Zhi-rong, et al. Experiment on a new concept wing layout with alleviated wake vortex[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 120250.(in Chinese)
[15] LIU Fei, LIU Xin-ze, MOU Ming-jiang, et al. Safety assessment of approximate segregated parallel operation on closely spaced parallel runways[J]. Chinese Journal of Aeronautics, 2019, 32(2): 463-476.
[16] 韩红蓉,李 娜,魏志强.飞机遭遇尾涡的安全性分析[J].交通运输工程学报,2012,12(1):45-49.
HAN Hong-rong, LI Na, WEI Zhi-qiang. Safety analysis of aircraft encountering wake vortex[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 45-49.(in Chinese)
[17] 冯志勇.尾流对飞行的影响及安全间隔研究[D].成都:西南交通大学,2007.
FENG Zhi-yong. How wake vortexes affect the flights and safety separation research[D]. Chengdu: Southwest Jiaotong University, 2007.(in Chinese)
[18] HALLOCK J N, HOLZÄPFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences, 2018, 98: 27-36.
[19] CHENG J, HOFF A, TITTSWORTH J, et al. The development of wake turbulence re-categorization in the United States[C]∥AIAA. 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 3434.
[20] ANTOLOVIC D, FRANJKOVIC D.Calculation of airplane
wake turbulence re-categorisation effects[J]. Transportation Research Procedia, 2020, 51: 179-189.
[21] 魏志强,牟明江.飞机尾流间隔标准中的机型分类方法[J].空军工程大学学报(自然科学版),2019,20(1):32-37.
WEI Zhi-qiang, MOU Ming-jiang. Study of classification of aircraft types in the wake turbulence separation standards[J]. Journal of Air Force Engineering University(Natural Science Edition), 2019, 20(1): 32-37.(in Chinese)
[22] LUCKNER R, REINKE A. Pilot models for simulation of wake vortex encounters in cruise[C]∥AIAA. AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7683.
[23] ROJAS J I, MELGOSA M, PRATS X. Sensitivity analysis of maximum circulation of wake vortex encountered by en-route aircraft[J]. Aerospace, 2021, 8(7): 194-215.
[24] HOLZÄPFEL F. Effects of environmental and aircraft
parameters on wake vortex behavior[J]. Journal of Aircraft, 2014, 51(5): 1490-1500.
[25] POIREL D, PRICE S J. Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow[J]. Nonlinear Dynamics, 2007, 48(4): 423-435.
[26] KAZARIN P, PROVALOV A, GOLUBEV V, et al. Terminal-zone wake vortex safety assessment in the context of UAS integration in the NAS[J]. Transportation Research Procedia, 2016, 14(1): 1364-1373.
[27] 魏志强,吴金栋,刘馨泽,等.空中交通尾流间隔标准的安全性评估分析[J].中国安全生产科学技术,2018,14(12):180-185.
WEI Zhi-qiang, WU Jin-dong, LIU Xin-ze, et al. Safety assessment and analysis on standard of wake separation for air traffic[J]. Journal of Safety Science and Technology, 2018, 14(12): 180-185.(in Chinese)
[28] HOOGSTRATEN M, VISSER H G, HART D, et al. Improved understanding of en route wake-vortex encounters[J]. Journal of Aircraft, 2015, 52(3): 981-989.
[29] HOLZÄPFEL F. Probabilistic two-phase aircraft wake-vortex model: further development and assessment[J]. Journal of Aircraft, 2006, 43(3): 700-708.
[30] CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal, 1970, 8(12): 2172-2179.

Memo

Memo:
-
Last Update: 2022-09-01