[1] 徐肖豪,赵鸿盛,王振宇.尾流间隔缩减技术综述[J].航空学报,2010,31(4):655-662.
XU Xiao-hao, ZHAO Hong-sheng, WANG Zhen-yu. Overview of wake vortex separation reduction systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 655-662.(in Chinese)
[2] 魏志强,徐肖豪.飞机尾涡流场的建模与仿真计算研究[J].交通运输系统工程与信息,2010,10(4):186-191.
WEI Zhi-qiang, XU Xiao-hao. Modeling and simulating of flow field for aircraft wake vortex[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 186-191.(in Chinese)
[3] SCHUMANN U, SHARMAN R. Aircraft wake-vortex
encounter analysis for upper levels[J]. Journal of Aircraft, 2015, 52(4): 1277-1285.
[4] HOLZÄPFEL F. Probabilistic two-phase wake vortex decay
and transport model[J]. Journal of Aircraft, 2003, 40(2): 323-331.
[5] STEPHAN A, SCHRALL J, HOLZÄPFEL F. Numerical
optimization of plate-line design for enhanced wake-vortex decay[J]. Journal of Aircraft, 2017, 54(3): 995-1010.
[6] SARPKAYA T. Decay of wake vortices of large aircraft[J]. AIAA Journal, 1998, 36(9): 1671-1679.
[7] PROCTOR F H, HAMILTON D W, SWITZER G F. TASS driven algorithms for wake prediction[C]∥AIAA. 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 1073.
[8] CAMPOS L M B C, MARQUES J M G. On an analytical
model of wake vortex separation of aircraft[J]. The Aeronautical Journal, 2016, 120(1232): 1534-1565.
[9] SPEIJKER L J P, VIDAL A, BARBARESCO F, et al. ATC-wake: integrated wake vortex safety and capacity system[J]. Journal of Air Traffic Control, 2007, 49(1): 17-32.
[10] DE VISSCHER I, LONFILS T, WINCKELMANS G. Fast-time modeling of ground effects on wake vortex transport and decay[J]. Journal of Aircraft, 2013, 50(5): 1514-1525.
[11] LUCKNER R, HÖHNE G, FUHRMANN M. Hazard
criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687.
[12] 魏志强,屈秋林,刘 薇,等.飞机尾涡流场参数的仿真计算方法研究综述[J].空气动力学学报,2019,37(1):33-42.
WEI Zhi-qiang, QU Qiu-lin, LIU Wei, et al. Review on the artificial calculating methods for aircraft wake vortex flow field parameters[J]. Acta Aerodynamica Sinica, 2019, 37(1): 33-42.(in Chinese)
[13] 魏志强,李志远,刘 薇.侧风影响下的飞机尾流强度消散与涡核运动[J].空军工程大学学报(自然科学版),2017,18(6):27-33.
WEI Zhi-qiang, LI Zhi-yuan, LIU Wei. Research on aircraft wake vortex strength dissipation and vortex motion under crosswind impact[J]. Journal of Air Force Engineering University(Natural Science Edition), 2017, 18(6): 27-33.(in Chinese)
[14] 朱 睿,刘锦生,刘志荣,等.新概念机翼尾流特性实验[J].航空学报,2017,38(4):120250.
ZHU Rui, LIU Jin-sheng, LIU Zhi-rong, et al. Experiment on a new concept wing layout with alleviated wake vortex[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 120250.(in Chinese)
[15] LIU Fei, LIU Xin-ze, MOU Ming-jiang, et al. Safety assessment of approximate segregated parallel operation on closely spaced parallel runways[J]. Chinese Journal of Aeronautics, 2019, 32(2): 463-476.
[16] 韩红蓉,李 娜,魏志强.飞机遭遇尾涡的安全性分析[J].交通运输工程学报,2012,12(1):45-49.
HAN Hong-rong, LI Na, WEI Zhi-qiang. Safety analysis of aircraft encountering wake vortex[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 45-49.(in Chinese)
[17] 冯志勇.尾流对飞行的影响及安全间隔研究[D].成都:西南交通大学,2007.
FENG Zhi-yong. How wake vortexes affect the flights and safety separation research[D]. Chengdu: Southwest Jiaotong University, 2007.(in Chinese)
[18] HALLOCK J N, HOLZÄPFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences, 2018, 98: 27-36.
[19] CHENG J, HOFF A, TITTSWORTH J, et al. The development of wake turbulence re-categorization in the United States[C]∥AIAA. 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 3434.
[20] ANTOLOVIC D, FRANJKOVIC D.Calculation of airplane
wake turbulence re-categorisation effects[J]. Transportation Research Procedia, 2020, 51: 179-189.
[21] 魏志强,牟明江.飞机尾流间隔标准中的机型分类方法[J].空军工程大学学报(自然科学版),2019,20(1):32-37.
WEI Zhi-qiang, MOU Ming-jiang. Study of classification of aircraft types in the wake turbulence separation standards[J]. Journal of Air Force Engineering University(Natural Science Edition), 2019, 20(1): 32-37.(in Chinese)
[22] LUCKNER R, REINKE A. Pilot models for simulation of wake vortex encounters in cruise[C]∥AIAA. AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7683.
[23] ROJAS J I, MELGOSA M, PRATS X. Sensitivity analysis of maximum circulation of wake vortex encountered by en-route aircraft[J]. Aerospace, 2021, 8(7): 194-215.
[24] HOLZÄPFEL F. Effects of environmental and aircraft
parameters on wake vortex behavior[J]. Journal of Aircraft, 2014, 51(5): 1490-1500.
[25] POIREL D, PRICE S J. Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow[J]. Nonlinear Dynamics, 2007, 48(4): 423-435.
[26] KAZARIN P, PROVALOV A, GOLUBEV V, et al. Terminal-zone wake vortex safety assessment in the context of UAS integration in the NAS[J]. Transportation Research Procedia, 2016, 14(1): 1364-1373.
[27] 魏志强,吴金栋,刘馨泽,等.空中交通尾流间隔标准的安全性评估分析[J].中国安全生产科学技术,2018,14(12):180-185.
WEI Zhi-qiang, WU Jin-dong, LIU Xin-ze, et al. Safety assessment and analysis on standard of wake separation for air traffic[J]. Journal of Safety Science and Technology, 2018, 14(12): 180-185.(in Chinese)
[28] HOOGSTRATEN M, VISSER H G, HART D, et al. Improved understanding of en route wake-vortex encounters[J]. Journal of Aircraft, 2015, 52(3): 981-989.
[29] HOLZÄPFEL F. Probabilistic two-phase aircraft wake-vortex model: further development and assessment[J]. Journal of Aircraft, 2006, 43(3): 700-708.
[30] CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal, 1970, 8(12): 2172-2179.