[1] BOLTON T, IVANOV A, MARAVIN Y, et al. Energy, ride comfort, and road handling of regenerative vehicle suspensions[J]. Anta, 2014, 135(1): 48-65.
[2] ZHANG Yu-xin, GUO Kong-hui, WANG Dai, et al. Energy conversion mechanism and regenerative potential of vehicle suspensions[J]. Energy, 2017, 119: 961-970.
[3] WEI Chong-feng, JING Xing-jian. A comprehensive review on vibration energy harvesting: modelling and realization[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1-18.
[4] GAO Ze-peng, CHEN Si-zhong, ZHAO Yu-zhuang, et al. Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension[J]. Energy, 2019, 170: 521-536.
[5] WANG Jia-bin, WANG Wei-ya, ATALLAH K, et al. A linear permanent-magnet motor for active vehicle suspension[J]. IEEE Transactions on Vehicular Technology, 2011, 60(1): 55-63.
[6] JASTRZEBSKI L, SAPIAN'GSKI B. Electrical interface for a self-powered MR damper-based vibration reduction system[J]. Acta Mechanica et Automatica, 2016, 10(3): 165-172.
[7] 寇发荣,任 全,方 涛,等.直线电机式悬架作动器性能分析及参数优化[J].机械设计,2017(12):37-42.
KOU Fa-rong, REN Quan, FANG Tao, et al. Performance analysis and parameter optimization of the suspension actuator with a linear motor[J]. Journal of Machine Design, 2017(12): 37-42.(in Chinese)
[8] KAWAMOTO Y, SUDA Y, INOUE H, et al. Modeling of electromagnetic damper for automobile suspension[J]. Journal of System Design and Dynamics, 2007, 1(3): 524-535.
[9] LIU Yi-lun, XU Lin, ZUO Lei. Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 1933-1943.
[10] XIE Long-han, LI Jie-hong, LI Xiao-dong, et al. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: design, modeling and experiments[J]. Mechanical Systems and Signal Processing, 2018, 99: 859-872.
[11] BENO J H, WEEKS D A, BRESIE D A, et al. Experimental comparison of losses for conventional passive and energy efficient active suspension systems[J]. SAE International, 2002, DOI: 10.4271/2002-01-0282.
[12] CHOI S B, SEONG M S, KIM K S. Vibration control of an
electrorheological fluid-based suspension system with an energy regenerative mechanism[J]. Noise and Vibration Worldwide, 2009, 223(4): 459-469.
[13] LI Zhong-jie, ZUO Lei, KUANG Jian, et al. Energy-harvesting shock absorber with a mechanical motion rectifier[J]. Smart Material Structures, 2013, 22(2): 025008.
[14] MARAVANDI A, MOALLEM M. Regenerative shock absorber using a two-leg motion conversion mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 2853-2861.
[15] GU Cheng, YIN Jun, LUO Jie, et al. Performance-oriented controls of a novel rocker-pushrod electromagnetic active vehicle suspension[J]. Mechanical Systems and Signal Processing, 2018, 109: 1-14.
[16] LI Chuan, TSE P W. Fabrication and testing of an energy-harvesting hydraulic damper[J]. Smart Materials and Structures, 2013, 22(6): 065024.
[17] WANG Rui-chen, GU Feng-shou, CATTLEY R, et al.
Modelling, testing and analysis of a regenerative hydraulic shock absorber system[J]. Energies, 2016, DOI: 10.3390/en9050386.
[18] ZOU Jun-yi, GUO Xue-xun, XU Lin, et al. Design, modeling, and analysis of a novel hydraulic energy-regenerative shock absorber for vehicle suspension[J]. Shock and Vibration, 2017, DOI: 10.1155/2017/3186584
[19] ABDELKAREEM M A A, XU Lin, ALI M K A, et al.
Vibration energy harvesting in automotive suspension system: a detailed review[J]. Applied Energy, 2018, 229: 672-699.
[20] JONASSON M, ROOS F. Design and evaluation of an active electromechanical wheel suspension system[J]. Mechatronics, 2008, 18(4): 218-230.
[21] HUANG C N, CHEN K H, LIN D T W. Development of an novel adaptive suspension system based on ball-screw mechanism[J]. Applied Mechanics and Materials, 2013, 477: 128-131.
[22] YIN Jun, CHEN Xin-bo, LI Jian-qin, et al. Investigation of equivalent unsprung mass and nonlinear features of electromagnetic actuated active suspension[J]. Shock and Vibration, 2015,DOI: 10.1155/2015/624712.
[23] ZHENG Xue-chun, YU Fan. Study on the potential benefits of an energy-regenerative active suspension for vehicles[J]. SAE transactions, 2005, DOI: 10.4271/2005-01-3564.
[24] 许广灿,徐 俊,李士盈,等.电动汽车振动能量回收悬架及其特性优化[J].西安交通大学学报,2016,50(8):90-95.
XU Guang-can, XU Jun, LI Shi-ying,et al. Energy regenerative suspension and its performance optimization for electric vehicle[J]. Journal of Xian Jiaotong University, 2016, 50(8): 90-95.(in Chinese)
[25] KAWAMOTO Y, SUDA Y, INOUE H, et al. Modeling of electromagnetic damper for automobile suspension[J]. Journal of System Design and Dynamics, 2007, 1(3): 524-535.
[26] 王庆年,刘松山,王伟华,等.滚珠丝杠式馈能型减振器的结构设计及参数匹配[J].吉林大学学报(工学版),2012,42(5):1100-1106.
WANG Qing-nian, LIU Song-shan, WANG Wei-hua, et al. Structure design and parameter matching of ball-screw regenerative damper[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(5): 1100-1106.(in Chinese)
[27] CHEN Shi-an, JIANG Xu-dong, YAO Ming, et al. A dual
vibration reduction structure-based self-powered active suspension system with PMSM-ball screw actuator via an improved H2/H∞ control[J]. Energy, 2020, DOI: 10.1016/j.energy.2020.117590.
[28] ROCKHILL A A, LIPO T A. A generalized transformation methodology for polyphase electric machines and networks[C]∥IEEE. 2015 IEEE International Electric Machines and Drives Conference. New York: IEEE, 2016: 27-34.
[29] TIAN Bing, AN Qun-tao, DUAN Jian-dong, et al. Cancellation of torque ripples with FOC strategy under two-phase failures of the five-phase PM motor[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5459-5472.
[30] 陈士安,孙文强,王 健,等.基于变压充电方法的直线电机式馈能型半主动悬架控制[J].交通运输工程学报,2018,18(2):90-100.
CHEN Shi-an, SUN Wen-qiang, WANG Jian, et al. Control of energy-reclaiming semi-active suspension with linear motor based on varying charge voltage method[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 90-100.(in Chinese)
[31] ZHANG Yu-xin, CHEN Hong, GUO Kong-hui, et al. Electro-hydraulic damper for energy harvesting suspension: modeling, prototyping and experimental validation[J]. Applied energy, 2017, 199: 1-12.
[32] SALMAN W, QI Ling-fei, ZHU Xin, et al. A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles[J]. Energy, 2018, 159: 361-372.
[33] 陈士安,仝嘉成,蒋旭东,等.基于调制白噪声与查表法的非平稳路面不平度建模方法[J].交通运输工程学报,2020,20(6):171-179.
CHEN Shi-an, TONG Jia-cheng, JIANG Xu-dong, et al. Modeling method for non-stationary road irregularity based on modulated white noise and lookup table method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 171-179.(in Chinese)
[34] CHEN Shi-an, WANG Jun-cheng, YAO Ming, et al. Improved optimal sliding mode control for a non-linear vehicle active suspension system[J]. Journal of Sound and Vibration, 2017, DOI: 10.1016/j.jsv.2017.02.017.
[35] 陈士安,邱 峰,何 仁,等.一种确定车辆悬架LQG控制加权系数的方法[J].振动与冲击,2008(2):65-68,176.
CHEN Shi-an, QIU Feng, HE Ren, et al. A method for choosing weights in a suspension LQG control[J]. Vibration and shock, 2008(2): 65-68, 176.(in Chinese)