|Table of Contents|

Mechanical characteristics test and nonlinear active controller design of energy-regenerative actuator for suspension(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2022年04期
Page:
232-243
Research Field:
载运工具运用工程
Publishing date:

Info

Title:
Mechanical characteristics test and nonlinear active controller design of energy-regenerative actuator for suspension
Author(s):
CHEN Shi-an1 GUAN Yu-liang1 REN Jie-yu2 YAO Ming1 JIANG Dong1
(1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; 2. Zhejiang Wanxiang Marelli Shock Absorbers Co., Ltd., Hangzhou 311215, Zhejiang, China)
Keywords:
vehicle engineering active suspension energy-regenerative actuator mechanical characteristic test parameter identification nonlinear dual constraints based H2/H control
PACS:
U461
DOI:
10.19818/j.cnki.1671-1637.2022.04.018
Abstract:
In order to improve the riding comfort and recover the vibration energy, the mechanical characteristics of a prototyped PMSM-ball screw energy-regenerative actuator were tested. The Coulomb damping and equivalent inertial mass of the actuator were identified, and the nonlinear controller for the corresponding energy-regenerative active suspension was designed. With electromagnetic dynamic modeling and electrical parameter calibration, the mechanical characteristic test on the actuator prototype with the triangle-wave and sine-wave displacement inputs was conducted by the experimental method of stepwise variable voltage charging. The Coulomb damping identification and equivalent inertial mass verification were carried out by the parameter fitting to make the modeling simulation curves of mechanical characteristics approximate the measured ones. For the mechanical active suspension model involving the Coulomb damping and equivalent inertial mass of the actuator, the nonlinear term was processed by the feedforward and feedback linearization, and the acceleration terms of the sprung mass or unsprung mass were normalized. On this basis, a dual-constraints-based H2/H controller was developed according to the maximum output force of the actuator. A comprehensive performance comparison among the passive suspension, ideal active suspension, conventional active suspension with H2/H control, and active suspension with dual-constraints-based H2/H control was made through the numerical simulations for verification and energy-regenerative performance analysis. Analysis results show that compared with the passive suspension, the root mean square of sprung mass acceleration and the comprehensive performance index of the active suspension with dual-constraints-based H2/H control reduce by 47.05% and 51.67%, respectively, which are just 1.86% and 1.34% inferior to those of the ideal active suspension, and 19.28% and 11.21% superior to those of the conventional active suspension with H2/H control. The total absorption power of the actuator is consumed by the Coulomb damping and motor stator resistance by 18.99% and 20.19%, respectively. By contrast, the average power reclaimed to batteries is as high as 60.82%. 7 tabs, 11 figs, 35 refs.

References:

[1] BOLTON T, IVANOV A, MARAVIN Y, et al. Energy, ride comfort, and road handling of regenerative vehicle suspensions[J]. Anta, 2014, 135(1): 48-65.
[2] ZHANG Yu-xin, GUO Kong-hui, WANG Dai, et al. Energy conversion mechanism and regenerative potential of vehicle suspensions[J]. Energy, 2017, 119: 961-970.
[3] WEI Chong-feng, JING Xing-jian. A comprehensive review on vibration energy harvesting: modelling and realization[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1-18.
[4] GAO Ze-peng, CHEN Si-zhong, ZHAO Yu-zhuang, et al. Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension[J]. Energy, 2019, 170: 521-536.
[5] WANG Jia-bin, WANG Wei-ya, ATALLAH K, et al. A linear permanent-magnet motor for active vehicle suspension[J]. IEEE Transactions on Vehicular Technology, 2011, 60(1): 55-63.
[6] JASTRZEBSKI L, SAPIAN'GSKI B. Electrical interface for a self-powered MR damper-based vibration reduction system[J]. Acta Mechanica et Automatica, 2016, 10(3): 165-172.
[7] 寇发荣,任 全,方 涛,等.直线电机式悬架作动器性能分析及参数优化[J].机械设计,2017(12):37-42.
KOU Fa-rong, REN Quan, FANG Tao, et al. Performance analysis and parameter optimization of the suspension actuator with a linear motor[J]. Journal of Machine Design, 2017(12): 37-42.(in Chinese)
[8] KAWAMOTO Y, SUDA Y, INOUE H, et al. Modeling of electromagnetic damper for automobile suspension[J]. Journal of System Design and Dynamics, 2007, 1(3): 524-535.
[9] LIU Yi-lun, XU Lin, ZUO Lei. Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 1933-1943.
[10] XIE Long-han, LI Jie-hong, LI Xiao-dong, et al. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: design, modeling and experiments[J]. Mechanical Systems and Signal Processing, 2018, 99: 859-872.
[11] BENO J H, WEEKS D A, BRESIE D A, et al. Experimental comparison of losses for conventional passive and energy efficient active suspension systems[J]. SAE International, 2002, DOI: 10.4271/2002-01-0282.
[12] CHOI S B, SEONG M S, KIM K S. Vibration control of an
electrorheological fluid-based suspension system with an energy regenerative mechanism[J]. Noise and Vibration Worldwide, 2009, 223(4): 459-469.
[13] LI Zhong-jie, ZUO Lei, KUANG Jian, et al. Energy-harvesting shock absorber with a mechanical motion rectifier[J]. Smart Material Structures, 2013, 22(2): 025008.
[14] MARAVANDI A, MOALLEM M. Regenerative shock absorber using a two-leg motion conversion mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 2853-2861.
[15] GU Cheng, YIN Jun, LUO Jie, et al. Performance-oriented controls of a novel rocker-pushrod electromagnetic active vehicle suspension[J]. Mechanical Systems and Signal Processing, 2018, 109: 1-14.
[16] LI Chuan, TSE P W. Fabrication and testing of an energy-harvesting hydraulic damper[J]. Smart Materials and Structures, 2013, 22(6): 065024.
[17] WANG Rui-chen, GU Feng-shou, CATTLEY R, et al.
Modelling, testing and analysis of a regenerative hydraulic shock absorber system[J]. Energies, 2016, DOI: 10.3390/en9050386.
[18] ZOU Jun-yi, GUO Xue-xun, XU Lin, et al. Design, modeling, and analysis of a novel hydraulic energy-regenerative shock absorber for vehicle suspension[J]. Shock and Vibration, 2017, DOI: 10.1155/2017/3186584
[19] ABDELKAREEM M A A, XU Lin, ALI M K A, et al.
Vibration energy harvesting in automotive suspension system: a detailed review[J]. Applied Energy, 2018, 229: 672-699.
[20] JONASSON M, ROOS F. Design and evaluation of an active electromechanical wheel suspension system[J]. Mechatronics, 2008, 18(4): 218-230.
[21] HUANG C N, CHEN K H, LIN D T W. Development of an novel adaptive suspension system based on ball-screw mechanism[J]. Applied Mechanics and Materials, 2013, 477: 128-131.
[22] YIN Jun, CHEN Xin-bo, LI Jian-qin, et al. Investigation of equivalent unsprung mass and nonlinear features of electromagnetic actuated active suspension[J]. Shock and Vibration, 2015,DOI: 10.1155/2015/624712.
[23] ZHENG Xue-chun, YU Fan. Study on the potential benefits of an energy-regenerative active suspension for vehicles[J]. SAE transactions, 2005, DOI: 10.4271/2005-01-3564.
[24] 许广灿,徐 俊,李士盈,等.电动汽车振动能量回收悬架及其特性优化[J].西安交通大学学报,2016,50(8):90-95.
XU Guang-can, XU Jun, LI Shi-ying,et al. Energy regenerative suspension and its performance optimization for electric vehicle[J]. Journal of Xian Jiaotong University, 2016, 50(8): 90-95.(in Chinese)
[25] KAWAMOTO Y, SUDA Y, INOUE H, et al. Modeling of electromagnetic damper for automobile suspension[J]. Journal of System Design and Dynamics, 2007, 1(3): 524-535.
[26] 王庆年,刘松山,王伟华,等.滚珠丝杠式馈能型减振器的结构设计及参数匹配[J].吉林大学学报(工学版),2012,42(5):1100-1106.
WANG Qing-nian, LIU Song-shan, WANG Wei-hua, et al. Structure design and parameter matching of ball-screw regenerative damper[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(5): 1100-1106.(in Chinese)
[27] CHEN Shi-an, JIANG Xu-dong, YAO Ming, et al. A dual
vibration reduction structure-based self-powered active suspension system with PMSM-ball screw actuator via an improved H2/H control[J]. Energy, 2020, DOI: 10.1016/j.energy.2020.117590.
[28] ROCKHILL A A, LIPO T A. A generalized transformation methodology for polyphase electric machines and networks[C]∥IEEE. 2015 IEEE International Electric Machines and Drives Conference. New York: IEEE, 2016: 27-34.
[29] TIAN Bing, AN Qun-tao, DUAN Jian-dong, et al. Cancellation of torque ripples with FOC strategy under two-phase failures of the five-phase PM motor[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5459-5472.
[30] 陈士安,孙文强,王 健,等.基于变压充电方法的直线电机式馈能型半主动悬架控制[J].交通运输工程学报,2018,18(2):90-100.
CHEN Shi-an, SUN Wen-qiang, WANG Jian, et al. Control of energy-reclaiming semi-active suspension with linear motor based on varying charge voltage method[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 90-100.(in Chinese)
[31] ZHANG Yu-xin, CHEN Hong, GUO Kong-hui, et al. Electro-hydraulic damper for energy harvesting suspension: modeling, prototyping and experimental validation[J]. Applied energy, 2017, 199: 1-12.
[32] SALMAN W, QI Ling-fei, ZHU Xin, et al. A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles[J]. Energy, 2018, 159: 361-372.
[33] 陈士安,仝嘉成,蒋旭东,等.基于调制白噪声与查表法的非平稳路面不平度建模方法[J].交通运输工程学报,2020,20(6):171-179.
CHEN Shi-an, TONG Jia-cheng, JIANG Xu-dong, et al. Modeling method for non-stationary road irregularity based on modulated white noise and lookup table method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 171-179.(in Chinese)
[34] CHEN Shi-an, WANG Jun-cheng, YAO Ming, et al. Improved optimal sliding mode control for a non-linear vehicle active suspension system[J]. Journal of Sound and Vibration, 2017, DOI: 10.1016/j.jsv.2017.02.017.
[35] 陈士安,邱 峰,何 仁,等.一种确定车辆悬架LQG控制加权系数的方法[J].振动与冲击,2008(2):65-68,176.
CHEN Shi-an, QIU Feng, HE Ren, et al. A method for choosing weights in a suspension LQG control[J]. Vibration and shock, 2008(2): 65-68, 176.(in Chinese)

Memo

Memo:
-
Last Update: 2022-09-01