[1] GAO Guo-qiang, HAO Jing, WEI Wen-fu, et al. Dynamics of pantograph-catenary arc during the pantograph lowering process[J]. IEEE Transactions on Plasma Science, 2016, 44(99): 2715-2723.
[2] 周 宁,张卫华.基于直接积分法的弓网耦合系统动态性能仿真分析[J].中国铁道科学,2008,29(6):71-76.
ZHOU Ning, ZHANG Wei-hua. Dynamical performance simulation of the pantograph-catenary coupled system based on direct integration method[J]. China Railway Science, 2008, 29(6): 71-76.(in Chinese)
[3] 梅桂明,张卫华.受电弓/接触网系统动力学模型及特性[J].交通运输工程学报,2002,2(1):20-25.
MEI Gui-ming, ZHANG Wei-hua. Dynamics model and behavior of pantograph/catenary system[J]. Journal of Traffic and Transportation Engineering, 2002, 2(1): 20-25.(in Chinese)
[4] 李瑞平,周 宁,吕青松,等.横风环境中弓网动力学性能分析[J].振动与冲击,2014,33(24):39-44,53.
LI Rui-ping, ZHOU Ning, LYU Qing-song, et al. Pantograph-catenary dynamic behavior under cross wind[J]. Journal of Vibration and Shock, 2014, 33(24): 39-44, 53.(in Chinese)
[5] TOSHIAKI, MAKINO K, YOUSHIDA S, et al. Running test on current collector with contact force controller for high-speed railways[J]. JSME International Journal Series C. 1997, 40(4): 671-680.
[6] COLLINA A, FCCHINETTI A, FOSSATI F, et al. Hardware in the loop test-rig for identification and control application on high speed pantographs[J]. Shock and Vibration, 2004, 11(3): 2171-2176.
[7] 谢 建,刘志刚,韩志伟,等.弓网耦合动力学模型仿真及接触网不平顺分析[J].电气化铁道,2009,20(6):23-26,29.
XIE Jian, LIU Zhi-gang, HAN Zhi-wei, et al. Pantograph and overhead contact line coupling dynamic model simulation and analysis of imbalance of overhead contact line [J]. Electric Railway, 2009, 20(6): 23-26, 29.(in Chinese)
[8] 吴 燕,吴俊勇,郑积浩.基于有限元和空气动力学模型的高速受电弓动态性能仿真[J].西南交通大学学报,2009,44(6):855-859.
WU Yan, WU Jun-yong, ZHENG Ji-hao. Simulation of high-speed pantograph dynamic performance based on finite element model and aerodynamic pantograph model[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 855-859.(in Chinese)
[9] ZHOU Ning, ZHANG Wei-hua, LI Rui-ping. Dynamic
performance of a pantograph catenary system with the consideration of the appearance characteristics of contact surfaces[J]. Journal of Zhejiang University—Science A: Applied Physics and Engineering, 2011, 12(12): 913-920.
[10] LEE J H, KIM Y G, PAIK J S, et al. Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train[J]. Journal of Mechanical Scienceand Technology, 2012, 26(10): 3253-3260.
[11] ZHANG Wei-hua, MEI Gui-ming, WU Xue-jie, et al. Hybrid simulation of dynamics for the pantograph-catenary system[J]. Vehicle System Dynamics, 2002, 38(6): 393-414.
[12] COLLINA A, BRUNI S. Numerical simulation of pantograph-overhead equipment interaction[J]. Vehicle System Dynamics, 2002, 38(4): 261-291.
[13] 田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9.
TIAN Hong-qi. Study evolvement of train aerodynamics in china[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9.(in Chinese)
[14] 李 田,戴志远,刘加利,等.中国高速列车气动减阻优化综述[J].交通运输工程学报,2021,21(1):59-80.
LI Tian, DAI Zhi-yuan, LIU Jia-li, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China [J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80.(in Chinese)
[15] TIAN Hong-qi. Review of research on high-speed railway
aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1(1): 1-21.
[16] 姚拴宝,郭迪龙,杨国伟,等.高速列车气动阻力分布特性研究[J].铁道学报,2012,34(7):18-23.
YAO Shuan-bao, GUO Di-long, YANG Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23.(in Chinese)
[17] 郭迪龙,姚拴宝,刘晨辉,等.高速列车受电弓非定常气动特性研究[J].铁道学报,2012,34(11):16-21.
GUO Di-long, YAO Shuan-bao, LIU Chen-hui, et al. Unsteady aerodynamic characteristics of high-speed pantograph[J]. Journal of the China Railway Society, 2012, 34(11): 16-21.(in Chinese)
[18] YAO Shuan-bao, GUO Di-long, YANG Guo-wei. The influence of pantograph aerodynamic characteristics caused by its shroud[J]. Lecture Notes in Electrical Engineering, 2012, 148(1): 41-52.
[19] 刘 星,邓 见,郑 耀,等.高速列车受电弓空气动力学对弓网受流的影响[J].浙江大学学报(工学版),2013,47(3):558-564.
LIU Xing, DENG Jian, ZHENG Yao, et al. Impact of aerodynamics of pantograph of a high-speed train on pantograph-catenary current collection[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(3): 558-564.(in Chinese)
[20] BOCCIOLONE M, RESTA F, ROCCHI D, et al. Pantograph aerodynamic effects on the pantograph-catenary interaction[J]. Vehicle System Dynamics, 2006, 44(S1): 560-570.
[21] POMBO J, AMBRÓSIO J, PEREIRA M, et al. Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains[J]. Vehicle System Dynamics, 2009, 47(11): 1327-1347.
[22] 付善强,陈大伟,梁建英,等.高速受电弓气动特性风洞试验研究[J].铁道机车车辆,2013,33(3):123-126.
FU Shan-qiang, CHEN Da-wei, LIANG Jian-ying, et al. Investigation on wind tunnel tests of the aerodynamic characteristics of high-speed pantograph[J]. Railway Locomotive and Car, 2013, 33(3): 123-126.(in Chinese)
[23] 李瑞平,周 宁,张卫华,等.高速列车过隧道对弓网动力学影响分析[J].振动与冲击,2013,32(6):33-37.
LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Influence of high-speed trains passing through tunnel on pantograph-catenary dynamic behaviors[J]. Journal of Vibration and Shock, 2013, 32(6): 33-37.(in Chinese)
[24] CARNEVALE M, FACCHINETTI A, MAGGIORI L, et al. Computational fluid dynamics as a means of assessing the influence of aerodynamic forces on the mean contact force acting on a pantograph[J]. Journal of Rail and Rapid Transit, 2016, 230(7): 733-738.
[25] 宋洪磊,吴俊勇,吴 燕,等.空气动力作用对高速受电弓受流特性影响研究[J].电气化铁道,2010,21(1):28-32.
SONG Hong-lei, WU Jun-yong, WU Yan, et al. Influence of aerodynamic to high speed pantograph current collection characteristics[J]. Electric Railway, 2010, 21(1): 28-32.(in Chinese)
[26] 杨 桢.基于空气动力学的受电弓高速受流研究[J].电气化铁道,2009,20(3):17-20.
YANG Zhen. Aerodynamics based study of pantograph high-speed current collection[J]. Electric Railway, 2009, 20(3): 17-20.(in Chinese)
[27] 李瑞平,周 宁,张卫华,等.受电弓气动抬升力计算方法与分析[J].铁道学报,2012,34(8):26-32.
LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Calculation and analysis of pantograph aerodynamic uplift force [J]. Journal of the China Railway Society, 2012, 34(8): 26-32.(in Chinese)
[28] HEMIDA H, KRAJNOVIAC'G S. Exploring flow structures
around a simplified ICE2 train subjected to a 30° side wind using LES[J]. Engineering Applications of Computational Fluid Mechanics, 2009, 3(1): 28-41.
[29] LI Tian, DAI Zhi-yuan, YU Meng-ge, et al. Numerical
investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560.
[30] LI Tian, HEMIDA H, ZHANG Ji-ye. Comparisons of shear stress transport and detached eddy simulations of the flow around trains[J]. Journal of Fluids Engineering, 2018, 140(11): 1108-1112.
[31] DAI Zhi-yuan, LI Tian, ZHANG Wei-hua, et al. Numerical study on aerodynamic performance of high-speed pantograph with double strips[J]. Fluid Dynamics and Materials Processing, 2020, 16(1): 31-40.
-------
---NEXT MATCH---
参考文献[26]建立了仿真分析模型进行对比分析。复合材料带孔板模型采用3D壳单元进行建模,采用S4R四节点一次减缩积分壳单元,并运用网格局部细分策略,开孔附近的最小网格尺寸为0.5 mm,网格分布如图2所示。
图2 复合材料带孔板有限元模型
Fig.2 Finite element model of composite plate with hole图3 载荷-位移曲线
Fig.3 Load-displacement curves带孔板损伤失效仿真分析结果如图3所示,本文通过仿真分析获得的失效载荷与文献[26]中的失效载荷误差为5.1%,验证了本文仿真分析方法的有效性。
2 带孔板优化设计
本文采用Hypermesh-OptiStruct中的自由形状优化和自由尺寸优化方法,对带孔板的孔形和铺层进行优化设计,其中孔形优化采用的是自由形状优化模块,铺层优化采用了3个模块(自由尺寸优化、尺寸优化和次序优化),然后再利用ABAQUS软件对优化后的复合材料带孔板进行损伤失效分析,对比优化前后的失效过程与失效载荷。本文先分别介绍了单独孔形优化和铺层优化方法,然后对比了仅孔形优化、仅铺层优化、先孔形优化后铺层优化、先铺层优化后孔形优化4种优化方案的优化结果。由于圆孔、三角孔和方孔在结构中较为常用,因此,本文参照《聚合物基复合材料层压板开孔拉伸强度标准试验方法》(ASTM D5766 D5766M)建立优化分析模型,模型尺寸如图4所示,所有孔的高度均为6 mm,单层厚度为0.125 mm,共16层,带孔板左端固定,右端施加位移W。
图4 不同孔形的复合材料带孔板尺寸
Fig.4 Dimensions of composite plates with different hole shapes
2.1 建立优化仿真分析模型
本文的优化工具采用OptiStruct分析求解器,模型选用2D壳单元,结果可直接导入仿真软件进行分析,划分的网格尺寸最大值为1,复合材料铺层选用PCOMPP属性,每个铺层厚度设置为0.125 mm并对称式铺置,铺层形式为[0/45/90/-45]2S。本文的铺层优化分析以圆孔为例进行说明,圆孔优化模型如图5所示,超级铺层如图6所示。
图5 复合材料圆孔板的优化模型
Fig.5 Optimization model of composite plate with circular hole图6 优化模型的超级铺层
Fig.6 Super layer of optimization model
2.2 孔形优化
孔形优化采用的是自由形状优化模块,该技术工具能够对选中的区域进行最优形状优化,可获取选中区域的最佳结构形状。从而提高材料承载能力和使用安全,各参数定义如下。
(1)优化变量为孔边区域上的所有单元节点,如图7所示。
(2)优化目标为体积最小。
(3)优化约束为0≤Xi≤2式中:Xi为第i个节点的位移矢量,i=1,2,…,n,n为节点的数量。
带孔板自由形状优化结果如图8所示,孔形均图7 自由形状优化控制区域
Fig.7 Control area of free shape optimization发生变化。
2.3 铺层优化
2.3.1 自由尺寸优化
自由尺寸优化的目的是在满足工况条件及制造约束的条件下,获得带孔板的最佳厚度设计参数。
复合材料带孔板有以下设计需求:从稳定性和耐冲击性能的观点考虑,最外层宜采用±45°铺层; 避免过多连续使用同一角度的铺层; 规定连续使用同一角度的铺层不能超过4层; 减少使用承载轴向拉伸载荷性能较差的90°层,如因设计需要用到90°铺层,连续出现不能超过2层; 0°、±45°、90°制造比例至少要占10%。
图8 三种孔形自由形状优化结果
Fig.8 Results of free shape optimization for three types of holes
(1)优化变量:带孔板的超级铺层。超级铺层内0°、90°、±45°铺层角度的初始厚度设置为0.5 mm。
(2)优化目标:使带孔板的质量最小。
(3)设计约束:带孔板总位移小于2 mm; 控制45°和-45°铺层成对出现,原因是减少纤维方向的数量差异过大导致带孔板会产生剪切扭曲变形。优化的数学表达[29]为{A=min(M)
tmin≤t≤t<sub>max
ε<sub>com≤ε</sup>*
d</sub>n<d<sub>max(7)
L=2 mm
0.05≤P90°≤0.1
0.2≤P±45°≤0.3
0.25≤P0°≤0.3式中: M 为带孔板总质量; A为总质量M的最小值; t 为厚度; tmin和tmax分别为允许厚度的最小和最大值; ε<sub>com为碳纤维复合材料的应变; ε* 为碳纤维复合材料层间应变许可值; dn为节点位移; dmax为规定的节点位移上限值; L为带孔板总厚度; P90°、P±45°、P0°分别为90°、±45°、0°铺层的占比。
求解后的最佳厚度分布如图9所示,自由尺寸优化后板厚由8 mm变为2 mm,其中各铺层厚度占比在制造约束及优化需求之下,90°铺层占比减少,0°层的占比增加。
图9 自由尺寸优化后的铺层厚度变化
Fig.9 Variation of layer thickness after free size optimization
2.3.2 尺寸优化
要考虑制造约束,另一方面还要满足CFRP材料制造的最小铺层厚度,因此,在第1阶段得出来的结果仅依赖于假设的复材结构和工况,这个铺层组中的铺层角度为0°、90°、+45°、-45°,对应的铺层厚度分配是不合理的,尺寸优化可约束单个铺层厚度和各铺层的占比。
(1)优化变量:自由尺寸优化后的铺层。
(2)优化目标:使带孔板的质量最小化。
(3)优化约束:带孔板总位移小于2 mm,控制45°和-45°铺层成对出现。
铺层厚度设计变量之间的关系[30]为T=∑4j=1Tj=T1+T2+T3+T4(8)式中:T为带孔板总铺层厚度; Tj为铺层角度为j对应的铺层厚度,j=1,2,3,4分别对应0°、90°、+45°、-45°。
尺寸优化后得到了各铺层角度的层数及板材的总厚度,即T=2 mm。结果如图10所示,最终的铺层数量确定为16层,各铺层的厚度如表3所示。
图10 尺寸优化结果
Fig.10 Results of size optimization表3 复合材料带孔板厚度分布
Table 3 Thickness distribution of composite plates with holes
铺层角度/(°)铺层厚度/mm0 0.7545 0.50-45 0.5090 0.25
2.3.3 次序优化
复合材料的纤维角度决定了结构的各向异性强度,通过叠放次序优化可实现最好的利用每个铺层获得最佳的设计效果; 还能满足带孔板结构要求及制造约束:铺层的纤维方向应尽量与拉伸受力和压缩方向一致,以便最大限度地利用复合材料力学特性; ±45°方向铺层要成对出现; 0°、90°、±45°最多只允许有2层同角度的铺层连续出现。
(1)顺序优化设计变量:尺寸优化后的铺层组。
(2)目标函数:使带孔板的质量最小。
(3)优化约束:45°和-45°铺层成对出现; 最多只允许有2层同角度铺层连续出现; 表面的铺层为45°或-45°铺层。
最终得到3种孔形的最优铺层如表4所示,经
表4 铺层优化结果
Table 4 Results of ply optimization
孔形 层数 厚度/
mm 最优铺层 原铺层圆孔 16 0.125 [45/-45/0/45/-45/0/0/90]</sub>S [0/45/90/-45]<sub>2S三角孔 16 0.125 [45/-45/0/45/-45/0/0/90]</sub>S [0/45/90/-45]<sub>2S方孔 16 0.125 [45/-45/0/45/0/0/-45/90]</sub>S [0/45/90/-45]<sub>2S
对比可知厚度相同的带孔板其孔形不同,最优层叠次序也会不同。
3 结果分析
3.1 不同优化方法对带孔板损伤失效的对比分析
以圆孔带孔板为例,当未优化圆孔带孔板出现纤维拉伸失效时,对比了相同失效载荷时不同优化方案的纤维拉伸失效状况,如图11所示,可见:未优化的圆孔板在此刻的纤维损伤(红色为已失效的单元)即将扩展至板边,孔形优化之后的失效单元要明显减少,由此可见孔形优化可使模型损伤延缓,提高承载能力; 而仅铺层优化、先孔形优化后铺层优化、先铺层优化后孔形优化在此时尚未出现纤维失效单元,说明效果比仅孔形优化要好很多。
当仅铺层优化出现纤维拉伸失效时,进一步对比了相同失效载荷时仅铺层优化、先孔形优化后铺层优化、先铺层优化后孔形优化的纤维损伤状态,如图12所示,可见:从纤维损伤的状态来看,铺层优化和孔形优化相结合的优化效果明显比单一优化方法效果好,且先孔形优化后铺层优化的方法要比先铺层优化后孔形优化的方法好。
图11 当未优化圆孔带孔板出现纤维拉伸失效时不同优化方法的纤维拉伸失效状态
Fig.11 Fiber tensile failure states of different optimization methods when fiber tensile failure occurs in unoptimized
composite plates with circular hole图12 当仅铺层优化圆孔带孔板出现纤维拉伸失效时不同优化方法的纤维拉伸失效状态
Fig.12 Fiber tensile failure states of different optimization methods when fiber tensile failure occurs in composite plates
with circular hole by ply optimization only
3.2 不同优化方法后失效载荷分析
带孔板优化前后的最高失效载荷如表5所示,由表5可见:仅孔形优化后失效载荷均有所提升,圆孔、三角孔、方孔带孔板优化后的失效载荷分别提升了2.0%、2.9%、2.2%,说明孔形优化对应力集中程度最高的三角孔带孔板的失效载荷提升最大; 仅铺层优化后的圆孔、三角孔、方孔带孔板失效载荷分别提升了13.4%、7.6%、10.2%,提升效果明显高于孔形优化,说明铺层优化是提升带孔板承载能力的主要方法,但是铺层优化对三角孔带孔板失效载荷的影响小于圆孔和方孔带孔板; 当采用仅孔形优化方法时,三角孔带孔板的失效载荷提升幅度最大; 当采用仅铺层优化方法时,圆孔带孔板失效载荷提升幅度最大; 先孔形优化后铺层优化后的圆孔、三角孔、方孔带孔板失效载荷分别提升了15.6%、13.5%、11.6%,而先铺层优化后孔形优化后的圆
表5 圆孔、三角孔、方孔带孔板优化后失效载荷提升幅度
Table 5 Improvement rates of failure load of composite plates
with circular, triangle and square holes after optimization%
优化类别 圆孔失效载荷
提升率 三角孔失效载荷
提升率 方孔失效载荷
提升率仅孔形 2.0 2.9 2.2仅铺层 13.4 7.6 10.2先孔形后铺层 15.6 13.5 11.6先铺层后孔形 12.1 12.6 10.7
孔、三角孔、方孔带孔板失效载荷分别提升了12.1%、12.6%、10.7%,说明同时使用孔形优化和铺层优化方法的优化效果明显高于单一优化方法,也说明先孔形优化后铺层优化获得的优化效果最好; 先孔形优化后铺层优化对3种孔形带孔板的优化效果均有所差异,圆孔带孔板优化效果明显高于三角孔和方孔带孔板。单从本文的数据来看,同时采用铺层优化和孔形优化时,二者的先后顺序对圆孔带孔板影响最大,对三角孔和方孔带孔板影响较小。
4 结 语
(1)采用仅孔形优化方法时,三角孔带孔板的失效载荷提升幅度最大,对圆孔和方孔的失效载荷提升幅度相对较小; 采用仅铺层优化对不同孔形的失效载荷提升效果明显大于仅孔形优化,因此,优先考虑铺层优化。
(2)同时采用孔形优化和铺层优化效果明显优于单一优化方法,其中先孔形优化后铺层优化方法对不同孔形的失效载荷提升幅度最大。
(3)同时采用孔形优化和铺层优化时,二者的先后顺序对圆孔带孔板影响最大,对三角孔和方孔影响较小。先孔形优化后铺层优化对3种孔形带孔板的优化效果均有所差异,圆孔和三角孔的优化效果明显高于方孔带孔板。
(4)对于3种孔形的带孔板,圆孔带孔板优化后失效载荷提升幅度最大,因此,在实际应用中圆孔带孔板的性能相对较好且稳定。
(5)本文仅对拉伸载荷作用下的带孔板优化进行了分析,后期还有必要考虑其他载荷的影响,如压缩、弯曲等。