[1] MALANDRI C, MANTECCHINI L, REIS V. Aircraft turnaround and industrial actions: how ground handlers' strikes affect airport airside operational efficiency[J]. Journal of Air Transport Management, 2019, 78: 23-32.
[2] JAEHN F, NEUMANN S. Airplane boarding[J]. European Journal of Operational Research, 2015, 244(2): 339-359.
[3] NYQUIST D C, MCFADDEN K L. A study of the airline boarding problem[J]. Journal of Air Transport Management, 2008, 14(4): 197-204.
[4] SCHMIDT M. A review of aircraft turnaround operations and simulations[J]. Progress in Aerospace Sciences, 2017, 92: 25-38.
[5] SCHULTZ M. Fast aircraft turnaround enabled by reliable passenger boarding[J]. Aerospace, 2018, 5(1): 1-18.
[6] SIMONE N. Is the boarding process on the critical path of the airplane turn-around[J]. European Journal of Operational Research, 2019, 277: 128-137.
[7] MILNE R, SALARI M, KATTAN L. Robust optimization of airplane passenger seating assignments [J]. Aerospace, 2018, 5(3): 1-13.
[8] 任新惠,张思雨.航空旅客登机策略研究综述[J].长安大学学报(社会科学版),2016,18(1):30-35.
REN Xin-hui, ZHANG Si-yu. Overview of researches on passengers aircraft boarding[J]. Journal of Chang'an University(Social Science Edition), 2016, 18(1): 30-35.(in Chinese)
[9] BIDANDA R, GENG Z, WINAKOR J, et al. A review of optimization models for boarding a commercial airplane[C]∥ FERTSCH M, STACHOWIAK A, MRUGALSKA B, et al. 24th International Conference on Production Research. Poznan: Poznan University of Technology, 2017: 1-6.
[10] ZHANG Lin-feng, YANG Hang-jun, WANG Kun, et al. The impact of COVID-19 on airline passenger travel behavior: an exploratory analysis on the Chinese aviation market[J]. Journal of Air Transport Management, 2021, 95: 102084.
[11] MILNE R J, KELLY A R. A new method for boarding passengers onto an airplane[J]. Journal of Air Transport Management, 2014, 34: 93-100.
[12] MILNE R J, SALARI M. Optimization of assigning passengers to seats on airplanes based on their carry-on luggage[J]. Journal of Air Transport Management, 2016, 54: 104-110.
[13] MILNE R J, DELCEA C, COTFAS L, et al. New methods for two-door airplane boarding using apron buses[J]. Journal of Air Transport Management, 2019, 80: 101705.
[14] STEFFEN J H. Optimal boarding method for airline passengers[J]. Journal of Air Transport Management, 2008, 14(3): 146-150.
[15] STEFFEN J H, HOTCHKISS J. Experimental test of airplane boarding methods[J]. Journal of Air Transport Management, 2012, 18: 64-67.
[16] VAN DEN BRIEL M H L, VILLALOBOS J R, HOGG G L, et al. America west airlines develops efficient boarding strategies[J]. Interfaces, 2005, 35(3): 191-201.
[17] KIERZKOWSKI A, KISIEL T. The human factor in the passenger boarding process at the airport[J]. Procedia Engineering, 2017, 187: 348-355.
[18] SCHULTZ M. Field trial measurements to validate a stochastic aircraft boarding model[J]. Aerospace, 2018, 5(1): 1-20.
[19] SCHULTZ M, REITMANN S. Consideration of passenger interactions for the prediction of aircraft boarding time[J]. Aerospace, 2018, 5(4): 1-14.
[20] HUTTER L, JAEHN F, NEUMANN S. Influencing factors on airplane boarding times[J]. Omega, 2019, 87: 177-190.
[21] SCHULTZ M, EVLER J, ASADI E, et al. Future aircraft turnaround operations considering post-pandemic requirements[J]. Journal of Air Transport Management, 2020, 89: 101886.
[22] PITCHFORTH J, WU P, MENGERSEN K. Applying a validation framework to a working airport terminal model[J]. Expert Systems with Application, 2014, 41(9): 4388-4400.
[23] LAHIJANI M S, ISLAM T, SRINIVASAN A, et al. Constrained linear movement model(CALM): simulation of passenger movement in airplanes[J]. Plos One, 2020, 15(3): 1-14.
[24] TANG Tie-qiao, YANG Shao-peng, OU Hui, et al. An aircraft boarding model with the group behavior and the quantity of luggage[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 115-127.
[25] STEINER A, PHILIPP M. Speeding up the airplane boarding process by using pre-boarding areas[C]∥HOOGENDOORN S, NIJKAMP P, HANSON S. 9th Swiss Transport Research Conference. Ascona: ETH, 2009: 1-30.
[26] BUDESCA G C, JUAN A A, CASAS P. Optimization of aircraft boarding processes considering passengers' grouping characteristics[C]∥TOLK A, YILMAZ L, DIALLO S Y, et al. 2014 Winter Simulation Conference. New York: IEEE, 2014: 1977-1988.
[27] WITTMANN J. Customer-oriented optimization of the airplane boarding process[J]. Journal of Air Transport Management, 2019, 76: 31-39.
[28] TANG Tie-qiao, YANG Shao-peng, OU Hui, et al. An aircraft boarding model accounting for group behavior[J]. Journal of Air Transport Management, 2018, 69: 182-189.
[29] TANG Tie-qiao, YANG Shao-peng, CHEN Liang. An extended boarding strategy accounting for the luggage quantity and group behavior[J]. Journal of Advanced Transportation, 2019, DOI: 10.1155/2019/8908935.
[30] TANG Tie-qiao, WU Yong-hong, HUANG Hai-jun, et al. An aircraft boarding model accounting for passengers' individual properties[J]. Transportation Research Part C: Emerging Technologies, 2012, 22: 1-16.
[31] MILNE R J, COTFAS L, DELCEA C, et al. Airplane boarding method for passenger groups when using apron buses[J]. IEEE Access, 2020, 8: 18019-18035.
[32] SCHULTZ M, SOOLAKI M. Analytical approach to solve the problem of aircraft passenger boarding during the coronavirus pandemic[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 1-17.
[33] SCHULTZ M, LUBIG D, ASADI E, et al. Implementation of a long-range air traffic flow management for the Asia-Pacific Region[J]. IEEE Access, 2021, 9: 124640-124659.
[34] SALARI M, MILNE R J, DELCEA C, et al. Social distancing in airplane seat assignments for passenger groups[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 1070-1098.
[35] QIANG Sheng-jie, HUANG Qing-xia. New boarding strategies for a novel aircraft cabin installed with side-slip seats[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 1010-1031.
[36] BACHMAT E. Airplane boarding meets express line queues[J]. European Journal of Operational Research, 2019,275(3): 1165-1177.
[37] KISIEL T. Resilience of passenger boarding strategies to priority fares offered by airlines[J]. Journal of Air Transport Management, 2020, 87: 101853.
[38] SALARI M, MILNE R J, KATTAN L. Airplane boarding optimization considering reserved seats and passengers' carry-on bags[J]. Opsearch, 2019, 56(3): 806-823.
[39] BACHMAT E, ERLAND S, JAEHN F, et al. Air passenger preferences: an international comparison affects boarding theory[J]. Operations Research, 2021, DOI: 10.1287/opre.2021.2148.
[40] ZEINEDDINE H. A dynamically optimized aircraft boarding strategy[J]. Journal of Air Transport Management, 2017, 58: 144-151.
[41] ZEINEDDINE H. Reducing the effect of passengers' non-compliance with aircraft boarding rules[J]. Journal of Air Transport Management, 2021, 92: 102041.
[42] HIEMSTRA-VAN MASTRIGT S, OTTENS R, VINK P. Identifying bottlenecks and designing ideas and solutions for improving aircraft passengers' experience during boarding and disembarking[J]. Applied Ergonomics, 2019, 77: 16-21.
[43] 史跃亚,张俊然.基于冲突的窄体运输机登机过程仿真模型[J].计算机仿真,2015,32(7):46-50,74.
SHI Yue-ya, ZHANG Jun-ran. A simulation model of boarding process for narrow-body aircraft on the basis of interference[J]. Computer Simulation, 2015, 32(7): 46-50, 74.(in Chinese)
[44] OLIVEIRA D B P, COELHO J N, MORAES A D O. A simplified model to assess the influence of the configuration of commercial aircraft on boarding and deboarding[J]. International Journal of Aerospace Engineering, 2021, DOI: 10.1155/2021/8872992.
[45] SCHULTZ M. Dynamic change of aircraft seat condition for fast boarding[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 131-147.
[46] SCHULTZ M. Faster aircraft boarding enabled by infrastructural changes[C]∥CHAN V, DAMBROGIO A, ZACHAREWICZ G, et al. 2017 Winter Simulation Conference. New York: IEEE, 2017: 2530-2541.
[47] 强生杰,黄青霞.新型客机座舱环境下的旅客登机效率研究[J].交通运输系统工程与信息,2020,20(4):209-215.
QIANG Sheng-jie, HUANG Qing-xia. Evaluation of passenger boarding efficiency in a novel aircraft cabin environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 209-215.(in Chinese)
[48] 任新惠,唐少勇.单通道客机旅客登机策略比较研究[J].交通运输系统工程与信息,2014,14(4):173-179.
REN Xin-hui, TANG Shao-yong. Comparative study of boarding strategies for single-aisle aircraft[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(4): 173-179.(in Chinese)
[49] 任新惠,唐少勇.单通道客机登机策略模拟研究[J].科学技术与工程,2015,15(1):120-126,131.
REN Xin-hui, TANG Shao-yong. The simulation study of single aisle aircraft boarding strategy[J]. Science Technology and Engineering, 2015, 15(1): 120-126, 131.(in Chinese)
[50] IYIGUNLU S, YARLAGADDA P, FOOKES C. Agentbased application on different boarding strategies[J]. Applied Mechanics and Materials, 2014, 568-570: 1893-1897.
[51] SCHMIDT M, HEINEMANN P, HORNUNG M. Boarding and turnaround process assessment of single- and twin-aisle aircraft[C]∥PAYOT A, RENDALL T, ALLEN C B. 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017: 1-15.
[52] SCHULTZ M. Implementation and application of a stochastic aircraft boarding model[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 334-349.
[53] DELCEA C, MILNE R J, COTFAS L, et al. Methods for accelerating the airplane boarding process in the presence of apron buses[J]. IEEE Access, 2019, 7: 134372-134387.
[54] DELCEA C, COTFAS L, CHIRI N, et al. A two-door airplane boarding approach when using apron buses[J]. Sustainability, 2018, 10(3619): 1-14.
[55] COTFAS L A, DELCEA C, MILNE R J, et al. Testing new methods for boarding a partially occupied airplane using apron buses[J]. Symmetry-Basel, 2019, 11(1044): 1-23.
[56] MILNE R J, COTFAS L, DELCEA C, et al. Greedy method for boarding a partially occupied airplane using apron buses[J]. Symmetry-Basel, 2019, 11(1221): 1-19.
[57] 王 馨,张 江,吴金闪.统计物理学基础研究新进展[J].上海理工大学学报,2012,34(3):205-220.
WANG Xin, ZHANG Jiang, WU Jin-shan. Progress in studies of foundation of statistical physics[J]. Journal of University of Shanghai for Science and Technology, 2012, 34(3): 205-220.(in Chinese)
[58] 史启鸿.非对称排它过程中的复杂相变研究[D].合肥:中国科学技术大学,2012.
SHI Qi-hong. Study on the complex phase transitions of asymmetric simple exclusion processes[D]. Hefei: University of Science and Technology of China, 2012.(in Chinese)
[59] GORISSEN M, LAZARESCU A, MALLICK K, et al. Exact current statistics of the asymmetric simple exclusion process with open boundaries[J]. Physical Review Letters, 2012, 109(17): 1-5.
[60] FRETTE V, HEMMER P. Time needed to board an airplane: a power law and the structure behind it[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2012, 85: 011130.
[61] BERNSTEIN N. Comment on “time needed to board an airplane: a power law and the structure behind it”[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2012, 86: 023101.
[62] BAEK Y, HA M, JEONG H. Impact of sequential disorder on the scaling behavior of airplane boarding time[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2013, 87: 052803.
[63] BRICS M, KAUPUZS J, MAHNKE R. Scaling behavior of an airplane-boarding model[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2013, 87: 042117.
[64] QIANG Sheng-jie, JIA Bin, HUANG Qing-xia, et al. Mechanism behind phase transitions in airplane boarding process[J]. International Journal of Modern Physics C, 2016, 27(6): 1-12.
[65] QIANG Sheng-jie, JIA Bin, HUANG Qing-xia. A stochastic airplane boarding model in a framework of ASEP with distinguishable particles[J]. International Journal of Modern Physics C, 2018, 29(10): 1-17.
[66] STEFFEN J H. A statistical mechanics model for free-for-all airplane passenger boarding[J]. American Journal of Physics, 2008, 76: 1114-1119.
[67] 《中国公路学报》编辑部.中国交通工程学术研究综述·2016[J].中国公路学报,2016,29(6):1-161.
Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress: 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161.(in Chinese)
[68] BAZARGAN M. A linear programming approach for aircraft boarding strategy[J]. European Journal of Operational Research, 2007, 183(1): 394-411.
[69] 刘 洋,刘振兆,贾利民.一种高效的登机策略[J].交通运输系统工程与信息,2008,8(5):118-123.
LIU Yang, LIU Zhen-zhao, JIA Li-min. Adaptive approach to aircraft boarding strategy[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(5): 118-123.(in Chinese)
[70] SOOLAKI M, MAHDAVI I, MAHDAVI-AMIRI N, et al. A new linear programming approach and genetic algorithm for solving airline boarding problem[J]. Applied Mathematical Modelling, 2012, 36(9): 4060-4072.
[71] 柯 源.飞机登机策略分析Ⅰ——离散事件模拟模型[J].数学的实践与认识,2007,37(18):85-94.
KE Yuan. Analysis of airplane boarding strategies Ⅰ—a discrete event simulation model[J]. Mathematics in Practice and Theory, 2007, 37(18): 85-94.(in Chinese)
[72] 柯 源.飞机登机策略分析Ⅱ——利用微分几何模拟登机[J].数学的实践与认识,2007,37(19):71-78.
KE Yuan. Analysis of airplane boarding strategies Ⅱ—modeling the airplane boarding with differential geometry[J]. Mathematics in Practice and Theory, 2007, 37(19): 71-78.(in Chinese)
[73] TANG Tie-qiao, HUANG Hai-jun, SHANG Hua-yan. A new pedestrian-following model for aircraft boarding and numerical tests[J]. Nonlinear Dynamics, 2012, 67(1): 437-443.
[74] 杨文强,吴文渊.线性常微分方程的全局误差估计和优化求解方法[J].中国科学:数学,2021,51(1):239-256.
YANG Wen-qiang, WU Wen-yuan. Global error estimation for linear ordinary differential equations and their numerical optimal solutions[J]. Scientia Sinica(Mathematica), 2021, 51(1): 239-256.(in Chinese)
[75] KUO C C. An improved zero-one linear programming model for the plane boarding problem[J]. Applications of Management Science, 2015, 17: 53-69.
[76] MIURA A, NISHINARI K. A passenger distribution analysis model for the perceived time of airplane boarding/deboarding, utilizing an ex-Gaussian distribution[J]. Journal of Air Transport Management, 2017, 59: 44-49.
[77] JAFER S, MI W. Comparative study of aircraft boarding strategies using cellular discrete event simulation[J]. Aerospace, 2017, 4(4): 1-22.
[78] BACHMAT E, BEREND D, SAPIR L, et al. Analysis of airplane boarding times[J]. Operations Research, 2009, 57(2): 499-513.
[79] 冯 霞,张 鑫,陈 锋.飞机过站上客过程持续时间分布[J].交通运输工程学报,2017,17(2):98-105.
FENG Xia, ZHANG Xin, CHEN Feng. Boarding duration distribution of aircraft turnaround[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 98-105.(in Chinese)
[80] SCHULTZ M, REITMANN S. Machine learning approach to predict aircraft boarding[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 391-408.
[81] 任新惠,焦 阳,赵嶷飞.考虑行李的多格子元胞自动机登机模型[J].交通运输工程学报,2017,17(4):122-129.
REN Xin-hui, JIAO Yang, ZHAO Yi-fei. Multi-grid cellular automata boarding model considering carried baggages[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 122-129.(in Chinese)
[82] BACHMAT E, KHACHATUROV V, KUPERMAN R. Optimal back-to-front airplane boarding[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2013, 87: 062805.
[83] BACHMAT E, BEREND D, SAPIR L, et al. Analysis of airplane boarding via space-time geometry and random matrix theory[J]. Journal of Physics A: Mathematical and General, 2005, 39(29): 1-4.
[84] ERLAND S, KAUPUS J, FRETTE V, et al. Lorentzian geometry based analysis of airplane boarding policies highlights “slow passengers first” as better[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2019, 100: 062313.
[85] ERLAND S, KAUPUS J, STEINER A, et al. Lorentzian geometry and variability reduction in airplane boarding: slow passengers first outperforms random boarding[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2021, 103: 062310.
[86] 鲁建厦,方 荣,兰秀菊.国内仿真技术的研究热点——系统仿真学报近期论文综述[J].系统仿真学报,2004,16(9):1910-1913.
LU Jian-sha, FANG Rong, LAN Xiu-ju. Hot research areas of simulation technique in the country—review of Journal of System Simulation in recent years[J]. Journal of System Simulation, 2004, 16(9): 1910-1913.(in Chinese)
[87] 郭谨一,刘 爽,陈绍宽,等.行人运动仿真研究综述[J].系统仿真学报,2008,20(9):2237-2242.
GUO Jin-yi, LIU Shuang, CHEN Shao-kuan, et al. Review of pedestrian movement simulation studies[J]. Journal of System Simulation, 2008, 20(9): 2237-2242.(in Chinese)
[88] LANDEGHEM H V, BEUSELINCK A. Reducing passenger boarding time in airplanes: a simulation based approach[J]. European Journal of Operational Research, 2002, 142(2): 294-308.
[89] FERRARI P, KAI N. Robustness of efficient passenger
boarding strategies for airplanes[J]. Transportation Research Record, 2005(1915): 44-54.
[90] MAS S, JUAN A A, ARIAS P, et al. A simulation study regarding different aircraft boarding strategies[C]∥FERNANDEZIZQUIERDO M A, MUNOZTORRES M J, LEON R. International Conference on Modeling and Simulation in Engineering, Economics, and Management. Berlin: Springer, 2013: 145-152.
[91] QIANG Sheng-jie, JIA Bin, HUANG Qing-xia. Evaluation
of airplane boarding/deboarding strategies: a surrogate experimental test[J]. Symmetry-Basel, 2017, 9(10): 1-15.
[92] GWYNNE S M V, SENARATH YAPA U, CODRINGTON L, et al. Small-scale trials on passenger microbehaviours during aircraft boarding and deplaning procedures[J]. Journal of Air Transport Management, 2018, 67: 115-133.
[93] REN Xin-hui, XU Xiao-bing. Experimental analyses of airplane boarding based on interference classification[J]. Journal of Air Transport Management, 2018, 71: 55-63.
[94] REN Xin-hui, ZHOU Xi-yu, XU Xiao-bing. A new model of luggage storage time while boarding an airplane: an experimental test[J]. Journal of Air Transport Management, 2020, 84: 101761.
[95] 陈悦峰,董原生,邓立群.基于Agent仿真平台的比较研究[J].系统仿真学报,2011,23(增1):110-116.
CHEN Yue-feng, DONG Yuan-sheng, DENG Li-qun. Comparison of agent-based simulation platforms[J]. Journal of System Simulation, 2011, 23(S1): 110-116.(in Chinese)
[96] THIELE J C, KURTH W, GRIMM V R. NetLogo: an R
package for running and exploring individual-based models implemented in NetLogo[J]. Methods in Ecology and Evolution, 2012, 3(3): 480-483.
[97] DELCEA C, COTFAS L, PAUN R. Agent-based evaluation of the airplane boarding strategies' efficiency and sustainability[J]. Sustainability, 2018, 10(1879): 1-26.
[98] DELCEA C, COTFAS L, CRCIUN L, et al. Are seat and aisle interferences affecting the overall airplane boarding time? An agent-based approach[J]. Sustainability, 2018, 10(4217): 1-23.
[99] DELCEA C, COTFAS L, SALARI M, et al. Investigating the random seat boarding method without seat assignments with common boarding practices using an agent-based modeling[J]. Sustainability, 2018, 10(4623): 1-28.
[100] CIMLER R, KAUTZKÁ E, OLEVI ACˇOVÁ K, et al. Agent-
based model for comparison of aircraft boarding methods[C]∥RAMIK J, STAVAREK D. 30th International Conference on Mathematical Methods in Economics. Karvina: Silesian University in Opava, 2012: 73-78.
[101] LUO Li-juan, HONG Shao-zhi, SHANG Shan-shan, et al. Intelligent boarding modelling and evaluation: a simulation-based approach[J]. Journal of Advanced Transportation, 2021, DOI: 10.1155/2021/9973336.
[102] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal De Physique Ⅰ, 1992, 2(12): 2221-2229.
[103] JIN Cheng-jie, WANG Wei, JIANG Rui. Cellular automaton simulations of a T-shaped unsignalised intersection with refined configurations[J]. Transportmetrica A: Transport Science, 2014, 10(3): 273-283.
[104] KNOSPE W, SANTEN L, SCHADSCHNEIDER A, et al. Towards a realistic microscopic description of highway traffic[J]. Journal of Physics A: Mathematical and General, 2000, 33(48): 477-485.
[105] BROCKFELD E, BARLOVIC R, SCHADSCHNEIDER A, et al. Optimizing traffic lights in a cellular automaton model for city traffic[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64: 056132.
[106] HOU Guang-yang, CHEN Su-ren, CHEN Feng. Framework of simulation-based vehicle safety performance assessment of highway system under hazardous driving conditions[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 23-36.
[107] 尚华艳,陆化普,彭 愚.基于元胞自动机的乘客登机策略[J].清华大学学报(自然科学版),2010,50(9):1330-1333.
SHANG Hua-yan, LU Hua-pu, PENG Yu. Aircraft boarding strategy based on cellular automata[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(9): 1330-1333.(in Chinese)
[108] 任新惠,苏 欣.大面积延误下登机口处旅客快速登机问题研究[J].计算机仿真,2015,32(6):425-429.
REN Xin-hui, SU Xin. Methods of quick boarding at departure gate in case of extensive delay[J]. Computer Simulation, 2015, 32(6): 425-429.(in Chinese)
[109] 任新惠,徐小冰.基于正交试验的旅客登机关键因素仿真分析[J].实验技术与管理,2018,35(12):122-126.
REN Xin-hui, XU Xiao-bing. Simulation analysis of passengers' boarding key factors based on orthogonal test[J]. Experimental Technology and Management, 2018, 35(12): 122-126.(in Chinese)
[110] 任新惠,唐少勇,赵嶷飞.基于干扰转移的登机新策略[J].交通运输系统工程与信息,2016,16(2):146-154.
REN Xin-hui, TANG Shao-yong, ZHAO Yi-fei. A new boarding strategy based on the interference transfer[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 146-154.(in Chinese)
[111] 任新惠,焦 阳,徐小冰.基于时间阈值的旅客登机模型及动态登机策略[J].交通运输系统工程与信息,2020,20(1):206-213.
REN Xin-hui, JIAO Yang, XU Xiao-bing. Passenger boarding model and dynamic boarding strategy based on time threshold[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 206-213.(in Chinese)
[112] QIANG Sheng-jie, JIA Bin, XIE Dong-fan, et al. Reducing airplane boarding time by accounting for passengers' individual properties: a simulation based on cellular automaton[J]. Journal of Air Transport Management, 2014, 40: 42-47.
[113] QIANG Sheng-jie, JIA Bin, HUANG Qing-xia, et al. Simulation of free boarding process using a cellular automaton model for passenger dynamics[J]. Nonlinear Dynamics, 2018, 91(1): 257-268.
[114] 强生杰,贾 斌,黄青霞.基于模拟退火算法的快速登机序列特性研究[J].交通运输系统工程与信息,2018,18(2):216-223.
QIANG Sheng-jie, JIA Bin, HUANG Qing-xia. The study of fast boarding sequence characteristics based on simulated annealing algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 216-223.(in Chinese)
[115] QIANG Sheng-jie, HUANG Qing-xia. The impact of aircraft cabin environment on passenger boarding efficiency and robustness[J]. KSCE Journal of Civil Engineering, 2021, 25(3): 1019-1030.
[116] GIITSIDIS T, SIRAKOULIS G C. Modeling passengers
boarding in aircraft using cellular automata[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4): 365-384.
[117] 潘明阳,严 飞,谢海燕.基于智能体与元胞自动机的智能交通仿真[J].交通运输工程学报,2006,6(2):70-74.
PAN Ming-yang, YAN Fei, XIE Hai-yan. Intelligent traffic simulation based on agent and cellular automata[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 70-74.(in Chinese)
[118] LU Jing, LIN An-rong, JIANG Chang-min, et al. Inuence of transportation network on transmission heterogeneity of COVID-19 in China[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 1-22.
[119] 中国民用航空局.2020年民航行业发展统计公报[R].北京:中国民用航空局,2021.
Civil Aviation Administration of China. Statistical bulletin on the development of civil aviation industry in 2020[R]. Beijing: Civil Aviation Administration of China, 2021.(in Chinese)
[120] DABACHINE Y, TAHERI H, BINIZ M, et al. Strategic design of precautionary measures for airport passengers in times of global health crisis COVID-19: parametric modelling and processing algorithms[J]. Journal of Air Transport Management, 2020, 89: 101917.
[121] ENGELMANN M, KLEINHEINZ T, HORNUNG M.
Advanced passenger movement model depending on the aircraft cabin geometry[J]. Aerospace, 2020, 7(182): 1-22.
[122] ZHANG Lin-feng, YANG Hang-jun, WANG Kun, et al. The impact of COVID-19 on airline passenger travel behavior: an exploratory analysis on the Chinese aviation market[J]. Journal of Air Transport Management, 2021, 95: 102084.
[123] SUN Xiao-qian, WANDELT S, ZHANG An-min. How did COVID-19 impact air transportation? A first peek through the lens of complex networks[J]. Journal of Air Transport Management, 2020, 89: 101928.
[124] XIE Chuan-zhi, TANG Tie-qiao, HU Peng-cheng, et al. A civil aircraft passenger deplaning model considering patients with severe acute airborne disease[J]. Journal of Transportation Safety and Security, 2021, 14(6): 1063-1084.
[125] AMANKWAH-AMOAH J. COVID-19 pandemic and innovation activities in the global airline industry: a review[J]. Environment International, 2021, 156: 1-7.
[126] COTFAS L A, DELCEA C, MILNE R J, et al. Evaluating classical airplane boarding methods considering COVID-19 flying restrictions[J]. Symmetry-Basel, 2020, 12(1087): 1-26.
[127] SALARI M, MILNE R J, DELCEA C, et al. Social distancing in airplane seat assignments[J]. Journal of Air Transport Management, 2020, 89: 101915.
[128] DELCEA C, MILNE R J, COTFAS L. Determining the
number of passengers for each of three reverse pyramid boarding groups with COVID-19 flying restrictions[J]. Symmetry-Basel, 2020, 12(2038): 1-23.
[129] DELCEA C, COTFAS L A, MILNE R J, et al. Grey
clustering of the variations in the back-to-front airplane boarding method considering COVID-19 flying restrictions[J]. Grey Systems Theory and Application, 2022, 12(1): 25-59.
[130] MILNE R J, COTFAS L A, DELCEA C, et al. Adapting the reverse pyramid airplane boarding method for social distancing in times of COVID-19[J]. Plos One, 2020, 15(11): 1-26.
[131] MILNE R J, DELCEA C, COTFAS L A. Airplane boarding methods that reduce risk from COVID-19[J]. Safety Science, 2021, 134: 1-13.
[132] MILNE R J, DELCEA C, COTFAS L A, et al. Evaluation of boarding methods adapted for social distancing when using apron buses[J]. IEEE Access, 2020, 8: 151650-151667.
[133] MILNE R J, COTFAS L A, DELCEA C. Minimizing health risks as a function of the number of airplane boarding groups[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 901-922.
[134] SCHULTZ M, FUCHTE J. Evaluation of aircraft boarding scenarios considering reduced transmissions risks[J]. Sustainability, 2020, 12(13): 1-20.
[135] SCHULTZ M. A metric for the real-time evaluation of the aircraft boarding progress[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 467-487.
[136] 马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,29(4):1201-1206,1210.
MA Yong-jie, YUN Wen-xia. Research progress of genetic algorithm[J]. Application Research of Computers, 2012, 29(4): 1201-1206, 1210.(in Chinese)
[137] 谢 云.模拟退火算法综述[J].微计算机信息,1998,14(5):63-65.
XIE Yun. A summary on the simulated annealing algorithm[J]. Microcomputer Information, 1998, 14(5): 63-65.(in Chinese)
[138] 王文义,任 刚.多种群退火贪婪混合遗传算法[J].计算机工程与应用,2005,41(23):60-62.
WANG Wen-yi, REN Gang. Multigroup annealing greedy hybrid genetic algorithm[J]. Computer Engineering and Applications, 2005, 41(23): 60-62.(in Chinese)
[139] ZHAO Z, ZHANG F, XU M, et al. Description and clinical treatment of an early outbreak of severe acute respiratory syndrome(SARS)in Guangzhou, PR China[J]. Journal of Medical Microbiology, 2003, 52(8): 715-720.
[140] JAIN S. Outbreak of swine-origin influenza A(H1N1)virus infection—Mexico, March-April 2009.[J]. MMWR Morbidity and Mortality Weekly Report, 2009, 58(17): 467-470.
[141] FERGUSON N M, CUMMINGS D, FRASER C, et al.
Strategies for mitigating an influenza pandemic[J]. Nature, 2006(442): 448-452.
[142] CHOI J H. Changes in airport operating procedures and
implications for airport strategies post-COVID-19[J]. Journal of Air Transport Management, 2021, 94: 1-13.