[1] REYHANOGLU M. Exponential stabilization of an underactuated autonomous surface vessel[J]. Automatica, 1997, 33(12): 2249-2254.
[2] 袁裕鹏,王康豫,尹奇志,等.船舶航速优化综述[J].交通运输工程学报,2020,20(6):18-34.
YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34.(in Chinese)
[3] ROBERTS G N, ZIRILLI A, TIANO A, et al. A fuzzy controller for integrated ship motion control[J]. IFAC Proceedings Volumes, 1999, 32(2): 8279-8284.
[4] MCGOOKIN E W, MURRAY-SMITH D J, LI Yun, et al. Ship steering control systemoptimisation using genetic algorithms[J]. Control Engineering Practice, 2000, 8(4): 429-443.
[5] ZHANG Rong-jun, CHEN Yao-bin, SUN Zeng-qi, et al.
Path control of a surface ship in restricted waters using sliding mode[J]. IEEE Transactions on Control Systems Technology, 2000, 8(4): 722-732.
[6] NIJMEIJER H, PETTERSEN K Y. Underactuated ship
tracking control: theory and experiments[J]. International Journal of Control, 2001, 74(14): 1435-1446.
[7] PAUL K C W. Navigation strategies for multiple autonomous mobile robots moving in formation[J]. Journal of Robotic Systems, 1991, 8(2): 177-195.
[8] 周翔宇,吴兆麟,王凤武,等.自主船舶的定义及其自主水平的界定[J].交通运输工程学报,2019,19(6):149-162.
ZHOU Xiang-yu, WU Zhao-lin, WANG Feng-wu, et al. Definition of autonomous ship and its autonomy level[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 149-162.(in Chinese)
[9] 柳晨光,初秀民,吴 青,等.USV发展现状及展望[J].中国造船,2014,55(4):194-205.
LIU Chen-guang, CHU Xiu-min, WU Qing, et al. A review and prospect of USV research[J]. Shipbuilding of China, 2014, 55(4): 194-205.(in Chinese)
[10] 侯瑞超,唐智诚,王 博,等.水面无人艇智能化技术的发展现状和趋势[J].中国造船,2020,61(增1):211-220.
HOU Rui-chao, TANG Zhi-cheng, WANG Bo, et al. Development status and trend of intelligent technology for unmanned surface vehicles[J]. Shipbuilding of China, 2020, 61(S1): 211-220.(in Chinese)
[11] 彭周华,吴文涛,王 丹,等.多无人艇集群协同控制研究进展与未来趋势[J].中国舰船研究,2021,16(1):51-64,82.
PENG Zhou-hua, WU Wen-tao, WANG Dan, et al. Coordinated control of multiple unmanned surface vehicles: recent advances and future trends[J]. Chinese Journal of Ship Research, 2021, 16(1): 51-64, 82.(in Chinese)
[12] LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4(4): 387-403.
[13] BALCH T, ARKIN R C. Behavior-based formation control
for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
[14] BEARD R W, LAWTON J, HADAEGH F Y. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790.
[15] DAS A K, FIERRO R, KUMAR V, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 813-825.
[16] SKJETNE R, MOI S, FOSSEN T I. Nonlinear formation
control of marine craft[C]∥IEEE. Proceedings of the 41st IEEE Conference on Decision and Control. New York: IEEE, 2002: 1699-1704.
[17] 张 伟,王乃新,魏世琳,等.水下无人潜航器集群发展现状及关键技术综述[J].哈尔滨工程大学学报,2020,41(2):289-297.
ZHANG Wei, WANG Nai-xin, WEI Shi-lin, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297.(in Chinese)
[18] 邢志伟,李 斯,罗 谦.机场道面除冰雪车辆队形控制模型[J].交通运输工程学报,2019,19(4):182-190.
XING Zhi-wei, LI Si, LUO Qian. Formation control model of airport pavement deicing vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 182-190.(in Chinese)
[19] 柳晨光,初秀民,欧阳雪,等.欠驱动水面模型船航向保持控制仿真平台[J].中国航海,2016,39(4):1-5,112.
LIU Chen-guang, CHU Xiu-min, OUYANG Xue, et al. Simulation platform for course keeping control of underactuated surface model ships[J]. Navigation of China, 2016, 39(4): 1-5, 112.(in Chinese)
[20] 严新平,吴 超,马 枫.面向智能航行的货船“航行脑”概念设计[J].中国航海,2017,40(4):95-98,136.
YAN Xin-ping, WU Chao, MA Feng. Conceptual design of navigation brain system for intelligent cargo ship[J]. Navigation of China, 2017, 40(4): 95-98, 136.(in Chinese)
[21] IHLE IA F, ARCAK M, FOSSEN T I. Passivity-based
designs for synchronized path-following[J]. Automatica, 2007, 43(9): 1508-1518.
[22] FAHIMI F. Sliding-mode formation control for underactuated
surface vessels[J]. IEEE Transactions on Robotics, 2007, 23(3): 617-622.
[23] PENG Zhou-hua, WANG Jun, WANG Dan, et al. An overview of recent advances in coordinated control of multiple autonomous surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 17(2): 732-745.
[24] 柯 涛,张 恒,宋 佳.海上无人艇编队抗同频干扰技术研究[J].中国造船,2020,61(增1):105-112.
KE Tao, ZHANG Heng, SONG Jia. Research on the technology of anti-jamming of the same frequency for the formation of USV[J]. Shipbuilding of China, 2020, 61(S1): 105-112.(in Chinese)
[25] 张卫东,刘笑成,韩 鹏.水上无人系统研究进展及其面临的挑战[J].自动化学报,2020,46(5):847-857.
ZHANG Wei-dong, LIU Xiao-cheng, HAN Peng. Progress and challenges of overwater unmanned systems[J]. Acta Automatica Sinica, 2020, 46(5): 847-857.(in Chinese)
[26] SUN Zhi-jian, ZHANG Guo-qing, LU Yu, et al. Leader-
follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation [J]. ISA Transactions, 2018, 72: 15-24.
[27] ENCARNACAO P, PASCOAL A. Combined trajectory tracking and path following: an application to the coordinated control of autonomous marine craft[C]∥IEEE. Proceedings of the 40th IEEE Conference on Decision and Control. New York: IEEE, 2001: 964-969.
[28] PEREIRA G A S, PEREIRA G A S, DAS A K, et al.
Formation control with configuration space constraints[C]∥IEEE. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2003: 2755-2760.
[29] 李 芸,肖英杰.领航跟随法和势函数组合的船舶编队控制[J].控制理论与应用,2016,33(9):1259-1264.
LI Yun, XIAO Ying-jie. Combination of leader-follower method and potential function about ship formation control[J]. Control Theory and Applications, 2016, 33(9): 1259-1264.(in Chinese)
[30] SHI Hong, WANG Long, CHU Tian-guang. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions[J]. Physica D: Nonlinear Phenomena, 2006, 213(1): 51-65.
[31] 王冬梅,方华京.基于虚拟领航者的智能群体群集运动控制[J].华中科技大学学报(自然科学版),2008,36(10):5-7.
WANG Dong-mei, FANG Hua-jing. Virtual leaders-based control of flocking motion of intelligent swarm[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2008, 36(10): 5-7.(in Chinese)
[32] 王 彬.多艘动力定位船鲁棒自适应编队控制研究[D].哈尔滨:哈尔滨工程大学,2017.
WANG Bin. Research on robust adaptive formation control of multiple dynamic positioning vessels[D]. Harbin: Harbin Engineering University, 2017.(in Chinese)
[33] PENG Zhou-hua, WANG Dan, YAO Yu-bin, et al. Robust
adaptive formation control with autonomous surface vehicles[C]∥IEEE. Proceedings of the 29th Chinese Control Conference. New York: IEEE, 2010: 2115-2120.
[34] DUNBAR W B, CAVENEY D S. Distributed receding horizon control of vehicle platoons: stability and string stability[J]. IEEE Transactions on Automatic Control, 2011, 57(3): 620-633.
[35] ÖGREN P, EGERSTEDT M, HU X. A control Lyapunov function approach to multiagent coordination[J]. IEEE Transactions on Robotics and Automation, 2001, 18(5): 847-851.
[36] GHOMMEM J, MNIF F, POISSON G, et al. Nonlinear
formation control of a group of underactuated ships[C]∥IEEE. Proceedings of the IEEE OCEANS 2007-Europe. New York: IEEE, 2007: 1-8.
[37] 秦梓荷,林 壮,李 平,等.存在饱和输入量的欠驱动船舶编队控制[J].华中科技大学学报(自然科学版),2015,43(8):75-78.
QIN Zi-he, LIN Zhuang, LI Ping, et al. Formation control of underactuated ships with input saturation[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2015, 43(8): 75-78.(in Chinese)
[38] REN W, BEARD R. Decentralized scheme for spacecraft
formation flying via the virtual structure approach[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 73-82.
[39] MEHRJERDI H, GHOMMAM J, SAAD M. Nonlinear
coordination control for a group of mobile robots using a virtual structure[J]. Mechatronics, 2011, 21(7): 1147-1155.
[40] 崔荣鑫,徐德民,沈 猛,等.基于行为的机器人编队控制研究[J].计算机仿真,2006,23(2):137-139.
CUI Rong-xin, XU De-min, SHEN Meng, et al. Formation control of robots based on behavior[J]. Computer Simulation, 2006, 23(2): 137-139.(in Chinese)
[41] BALCH T, ARKIN R C. Behavior-based formation control
for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
[42] PANG Shi-kun, LI Ying-hui, YI Hong. Joint formation
control with obstacle avoidance of towfish and multiple autonomous underwater vehicles based on graph theory and the null-space-based method[J]. Sensors, 2019, 19(11): 2591.
[43] ANTONELLI G, ARRICHIELLO F, CHIAVERINI S.
Experiments of formation control with collisions avoidance using the null-space-based behavioral control[C]∥IEEE. 2006 14th Mediterranean Conference on Control and Automation. New York: IEEE, 2006: 1-6.
[44] ROSALES C D, SARCINELLI-FILHO M, SCAGLIA G, et al. Formation control of unmanned aerial vehicles based on the null-space[C]∥IEEE. 2014 International Conference on Unmanned Aircraft Systems(ICUAS). New York: IEEE, 2014: 229-236.
[45] AHMAD S, FENG Zhi, HU Guo-qiang. Multi-robot formation control using distributed null space behavioral approach[C]∥IEEE. International Conference on Robotics and Automation. New York: IEEE, 2014: 3607-3612.
[46] SEOK P B, JIN Y S. An error transformation approach for connectivity-preserving and collision-avoiding formation tracking of networked uncertain underactuated surface vessels[J]. IEEE Transactions on Cybernetics, 2018, DOI: 10.1109/TCYB.2018.2834919.
[47] 秦 奇.基于刚性结构的船舶编队控制[D].大连:大连海事大学,2018.
QIN Qi. Formation control for marine surface vessels based on rigid structure[D]. Dalian: Dalian Maritime University, 2018.(in Chinese)
[48] HUANG Chen-feng, ZHANG Xian-ku, ZHANG Guo-qing. Improved decentralized finite-time formation control of underactuated USVs via a novel disturbance observer[J]. Ocean Engineering, 2019, 174: 117-124.
[49] 曲成刚,曹喜滨,张泽旭.人工势场和虚拟领航者结合的多智能体编队[J].哈尔滨工业大学学报,2014,46(5):1-5.
QU Cheng-gang, CAO Xi-bin, ZHANG Ze-xu. Multi-agent system formation integrating virtual leaders into artificial potentials[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 1-5.(in Chinese)
[50] 王树凤,张钧鑫,张俊友.基于人工势场和虚拟领航者的智能车辆编队控制[J].上海交通大学学报,2020,54(3):305-311.
WANG Shu-feng, ZHANG Jun-xin, ZHANG Jun-you. Intelligent vehicles formation control based on artificial potential field and virtual leader[J]. Journal of Shanghai Jiao Tong University, 2020, 54(3): 305-311.(in Chinese)
[51] 王 楠,徐洁琼.基于图论和行为的深空航天器网络编队控制[J].沈阳工业大学学报,2011,33(4):439-444.
WANG Nan, XU Jie-qiong. Graph theory and behavior based networked formation control for spacecraft in deep space[J]. Journal of Shenyang University of Technology, 2011, 33(4): 439-444.(in Chinese)
[52] LIU Chen-guang, QI Jun-lin, CHU Xiu-min, et al. Cooperative ship formation system and control methods in the ship lock waterway[J]. Ocean Engineering, 2021, 226: 108826.
[53] 欧阳子路,王鸿东,黄 一,等.基于改进RRT算法的无人艇编队路径规划技术[J].中国舰船研究,2020,15(3):18-24.
OUYANG Zi-lu, WANG Hong-dong, HUANG Yi, et al. Path planning technologies for USV formation based on improved RRT[J]. Chinese Journal of Ship Research, 2020, 15(3): 18-24.(in Chinese)
[54] BARRAQUAND J, LATOMBE J C. Robot motion planning: a distributed representation approach[J]. The International Journal of Robotics Research, 1991, 10(6): 628-649.
[55] 黄振葵,申雯竹,杜巧玲,等.基于遍历算法的巡航清漂船控制系统[J].吉林大学学报(信息科学版), 2019,37(2):208-215.
HUANG Zhen-kui, SHEN Wen-zhu, DU Qiao-ling, et al. Studies on control system of small-scale float-garbage automatic cruise ship based on open-water traversal algorithm[J]. Journal of Jilin University(Information Science Edition), 2019, 37(2): 208-215.(in Chinese)
[56] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[57] SETHIANJ A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the National Academy of Sciences, 1996, 93(4): 1591-1595.
[58] CHIANG H T L, TAPIA L. COLREG-RRT: an RRT-
based COLREGS-compliant motion planner for surface vehicle navigation[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2024-2031.
[59] XIN Jun-feng, ZHONG Jia-bao, YANG Feng-ru, et al. An improved genetic algorithm for path-planning of unmanned surface vehicle[J]. Sensors, 2019, 19(11): 2640.
[60] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
[61] LYRIDIS D V. An improved ant colony optimization algorithm for unmanned surface vehicle local path planning with multi-modality constraints[J]. Ocean Engineering, 2021, 241: 109890.
[62] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]∥IEEE. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.New York: IEEE, 1995: 39-43.
[63] WANG Le, LI Shi-jie, LIU Jia-lun, et al. Ship docking and
undocking control with adaptive-mutation beetle swarm prediction algorithm[J]. Ocean Engineering, 2022, 251: 111021.
[64] 史恩秀,陈敏敏,李 俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报,2014,45(6):53-57.
SHI En-xiu, CHEN Min-min, LI Jun, et al. Research on method of global path-planning for mobile robot based on ant-colony algorithm[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(6): 53-57.(in Chinese)
[65] LIU Yuan-chang, BUCKNALL R. Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment[J]. Ocean Engineering, 2015, 97: 126-144.
[66] MA Yong, HU Meng-qi, YAN Xin-ping. Multi-objective
path planning for unmanned surface vehicle with currents effects[J]. ISA Transactions, 2018, 75: 137-156.
[67] SANG Hong-qiang, YOU Yu-song, SUN Xiu-jun, et al.
The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223: 108709.
[68] 顾 辰.改进的A*算法在机器人路径规划中的应用[J].电子设计工程,2014,22(19):96-98,102.
GU Chen. Application of improved A* algorithm in robot path planning[J]. Electronic Design Engineering,2014, 22(19): 96-98, 102.(in Chinese)
[69] 陈若男,文聪聪,彭 玲,等.改进A*算法在机器人室内路径规划中的应用[J].计算机应用,2019,39(4):1006-1011.
CHEN Ruo-nan, WEN Cong-cong, PENG Ling, et al. Application of improved A* algorithm in indoor path planning for mobile robot[J]. Journal of Computer Applications, 2019, 39(4): 1006-1011.(in Chinese)
[70] SINGH Y, SHARMA S, SUTTON R, et al. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J]. Ocean Engineering, 2018, 168: 187-201.
[71] LIU Chen-guang, MAO Qing-zhou, CHU Xiu-min, et al.
An improved A-star algorithm considering water current, traffic separation and berthing for vessel path planning[J]. Applied Sciences, 2019, 9(6): 1057.
[72] NAEEM W, IRWIN G W, YANG A. COLREGs-based
collision avoidance strategies for unmanned surface vehicles[J]. Mechatronics, 2012, 22(6): 669-678.
[73] 吕红光,尹 勇.基于电子海图矢量数据建模的无人船路径规划[J].交通信息与安全,2019,37(5):94-106.
LYU Hong-guang, YIN Yong. Path planning of autonomous ship based on electronic chart vector data modeling[J]. Journal of Transportation Information and Safety, 2019, 37(5): 94-106.(in Chinese)
[74] LYU Hong-guang, YIN Yong. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields[J]. The Journal of Navigation, 2019, 72(3): 588-608.
[75] YOO B, KIM J. Path optimization for marine vehicles in
ocean currents using reinforcement learning[J]. Journal of Marine Science and Technology, 2016, 21(2): 334-343.
[76] 谢 朔.基于天牛须优化的船舶运动建模与避碰方法研究[D].武汉:武汉理工大学,2020.
XIE Shuo. Beetle antenna search based ship motion modeling and collision avoidance methods[D]. Wuhan: Wuhan University of Technology, 2020.(in Chinese)
[77] LEE S M, KWON K Y, JOONGSEON J. A fuzzy logic for autonomous navigation of marine vehicles satisfying COLREG guidelines[J]. International Journal of Control, Automation, and Systems, 2004, 2(2): 171-181.
[78] DAI Shi-lu, HE Shu-de, LIN Hai, et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 2017, 65(5): 4237-4246.
[79] 林安辉,蒋德松,曾建平.具有输入饱和的欠驱动船舶编队控制[J].自动化学报,2018,44(8):1496-1504.
LIN An-hui, JIANG De-song, ZENG Jian-ping. Underactuated ship formation control with input saturation[J]. Acta Automatica Sinica, 2018, 44(8): 1496-1504.(in Chinese)
[80] 周卫东,刘一萌,查羊羊.抗时滞无人艇编队队形控制及变换[J].哈尔滨工程大学学报,2019,40(11):1865-1869.
ZHOU Wei-dong, LIU Yi-meng, ZHA Yang-yang. Anti-time-delay unmanned surface vehicle formation control and transformation[J]. Journal of Harbin Engineering University, 2019, 40(11): 1865-1869.(in Chinese)
[81] 蔡 星,谢 磊,苏宏业,等.基于串联结构的分布式模型预测控制[J].自动化学报,2013,39(5):44-52.
CAI Xing, XIE Lei, SU Hong-ye, et al. Distributed model predictive control based on cascade processes[J]. Acta Automatica Sinica, 2013, 39(5): 44-52.(in Chinese)
[82] SCATTOLINI R. Architectures for distributed and hierarchical model predictive control—a review[J]. Journal of Process Control, 2009, 19(5): 723-731.
[83] 肖亚辉,王新民,王晓燕,等.无人机三维编队飞行模糊PID控制器设计[J].西北工业大学学报,2011,29(6):834-838.
XIAO Ya-hui, WANG Xin-min, WANG Xiao-yan, et al. An effective controller design of formation flight of unmanned aerial vehicles(UAV)[J]. Journal of Northwestern Polytechnical University, 2011, 29(6): 834-838.(in Chinese)
[84] LI Tie-shan, ZHAO Rong, CHEN C L P, et al. Finite-time formation control of under-actuated ships using nonlinear sliding mode control[J]. IEEE Transactions on Cybernetics, 2018, 48(11): 3243-3253.
[85] DO K D. Practical formation control of multiple underactuated
ships with limited sensing ranges[J]. Robotics and Autonomous Systems, 2011, 59(6): 457-471.
[86] SHOJAEI K. Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque[J]. Ocean Engineering, 2015, 105: 196-205.
[87] 邓 蕴.舰船编队避碰的自适应控制研究[J].舰船科学技术,2017,39(20):31-33.
DENG Yun. Research on adaptive control of ship formation collision avoidance[J]. Ship Science and Technology, 2017, 39(20): 31-33.(in Chinese)
[88] MAHMOOD A, KIM Y. Decentrailized formation flight
control of quadcopters using robust feedback linearization[J]. Journal of the Franklin Institute, 2017, 354(2): 852-871.
[89] HUANG Chen-feng, ZHANG Xian-ku, ZHANG Guo-qing. Adaptive neural finite-time formation control for multiple underactuated vessels with actuator faults[J]. Ocean Engineering, 2021, 222: 108556.
[90] 张 浩.多智能体系统分布式编队及其最优控制算法研究[D].西安:西安电子科技大学,2019.
ZHANG Hao. Research on the distributed formation control and optimization of multi-agent system[D]. Xi'an: Xidian University, 2019.(in Chinese)
[91] NEGENBORN R R, MAESTRE J M. Distributed model
predictive control: an overview and roadmap of future research opportunities[J]. IEEE Control Systems Magazine, 2014, 34(4): 87-97.
[92] GAO Yu-long, XIA Yuan-qing, DAI Li. Cooperative
distributed model predictive control of multiple coupled linear systems[J]. IET Control Theory and Applications, 2015, 9(17): 2561-2567.
[93] FERRAMOSCA A, LIMON D, ALVARADO I, et al.
Cooperative distributed MPC for tracking[J]. Automatica, 2013, 49(4): 906-914.
[94] LIU Teng-fei, JIANG Zhong-ping. Distributed formation
control of nonholonomic mobile robots without global position measurements[J]. Automatica, 2013, 49(2): 592-600.
[95] ZHOU Zhen, WANG Hong-bin, WANG Yue-ling, et al.
Distributed formation control for multiple quadrotor UAVs under Markovian switching topologies with partially unknown transition rates[J]. Journal of the Franklin Institute, 2019, 356(11): 5706-5728.
[96] ZHENG Hua-rong, WU Jun, WU Wei-min, et al. Cooperative distributed predictive control for collision-free vehicle platoons[J]. IET Intelligent Transport Systems, 2018, 13(5): 816-824.
[97] CHEN Lin-ying, HOPMAN H, NEGENBORN R R. Distributed model predictive control for vessel train formations of cooperative multi-vessel systems[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 101-118.
[98] CHEN Lin-ying, HOPMAN H, NEGENBORN R R. Distributed model predictive control for cooperative floating object transport with multi-vessel systems[J]. Ocean Engineering, 2019, DOI: 10.1016/j.oceaneng.2019.106515.
[99] ZHENG Hua-rong, NEGENBORN R R, LODEWIJKS G.
Cooperative distributed collision avoidance based on ADMM for waterborne AGVs[C]∥Springer. Proceedings of 2015 International Conference on Computational Logistics. Berlin: Springer, 2015: 181-194.
[100] 中国船级社.自主货物运输船舶指南[R].北京:中国船级社,2018.
China Classification Society. Guidelines of autonomous cargo ships[R]. Beiing: China Classification Society, 2018.(in Chinese)
[101] 徐利伟.智能网联汽车队列成形控制及队列稳定性研究[D].南京:东南大学,2019.
XU Li-wei. Formation control and stability analysis of connected and automated vehicle platoon[D]. Nanjing: Southeast University, 2019.(in Chinese)
[102] 王祥科,李 迅,郑志强.多智能体系统编队控制相关问题研究综述[J].控制与决策,2013(11):1601-1613.
WANG Xiang-ke, LI Xun, ZHENG Zhi-qiang. Survey of developments on multi-agent formation control related problems[J]. Control and Decision, 2013(11): 1601-1613.(in Chinese)
[103] 田大新,康 璐.基于鱼群效应的无人驾驶车辆编队算法研究[J].无人系统技术,2018,1(4):62-67.
TIAN Da-xin, KANG Lu. Research on algorithm of unmanned vehicle formation based on fish school[J]. Unmanned Systems Technology, 2018, 1(4): 62-67.(in Chinese)
[104] 周子为,段海滨,范彦铭.仿雁群行为机制的多无人机紧密编队[J].中国科学:技术科学,2017,47(3):230-238.
ZHOU Zi-wei, DUAN Hai-bin, FAN Yan-ming. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Scientia Sinica Technologica, 2017, 47(3): 230-238.(in Chinese)
[105] 杨之元,段海滨,范彦铭.基于莱维飞行鸽群优化的仿雁群无人机编队控制器设计[J].中国科学:技术科学,2018,48(2):161-169.
YANG Zhi-yuan, DUAN Hai-bin, FAN Yan-ming. Unmanned aerial vehicle formation controller design via the behavior mechanism in wild geese based on Levy flight pigeon-inspired optimization[J]. Scientia Sinica Technologica, 2018, 48(2): 161-169.(in Chinese)
[106] 张 弛,张 笛,孟 上,等.极地冰区船舶航运的发展动态与展望——POAC 2017国际会议综述[J].交通信息与安全,2017,35(5):1-10.
ZHANG Chi, ZHANG Di, MENG Shang, et al. Trends and prospects of polar navigation research from 24th POAC International Conference[J]. Journal of Transportation Information and Safety, 2017, 35(5): 1-10.(in Chinese)