[1] 马永杰,马芸婷,程时升,等.基于改进YOLOv3模型与Deep-SORT算法的道路车辆检测方法[J].交通运输工程学报,2021,21(2):222-231.
MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, et al. Road vehicle detection method based on improved YOLOv3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231.(in Chinese)
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥IEEE. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 886-893.
[3] PICCIOLI G, DE MICHEL E, PARODI P, et al. Robust method for road sign detection and recognition[J]. Image and Vision Computing, 1996, 14(3): 209-223.
[4] 梁敏健,崔啸宇,宋青松,等.基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法[J].交通运输工程学报,2017,17(3):151-158.
LIANG Min-jian, CUI Xiao-yu, SONG Qing-song, et al. Traffic sign recognition method based on HOG-Gabor feature fusion and Softmax classifier[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 151-158.(in Chinese)
[5] DENG Li, ABDEL-HAMID O, YU Dong. A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion[C]∥IEEE. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, 2013: 6669-6673.
[6] 马永杰,程时升,马芸婷,等.卷积神经网络及其在智能交通系统中的应用综述[J].交通运输工程学报,2021,21(4):48-71.
MA Yong-jie, CHENG Shi-sheng, MA Yun-ting, et al. Review of convolutional neural network and its application in intelligent transportation system[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 48-71.(in Chinese)
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥IEEE. 27th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014: 580-587.
[8] GIRSHICK R. Fast R-CNN[C]∥IEEE. 28th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1440-1448.
[9] REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[10] ZHU Zhe, LIANG Dun, ZHANG Song-hai, et al. Traffic-sign detection and classification in the wild[C]∥IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2110-2118.
[11] LIANG Zhen-wen, SHAO Jie, ZHANG Dong-yang, et al. Traffic sign detection and recognition based on pyramidal convolutional networks[J]. Neural Computing and Applications, 2020, 32(11): 6533-6543.
[12] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 2117-2125.
[13] 周 苏,支雪磊,刘 懂,等.基于卷积神经网络的小目标交通标志检测算法[J].同济大学学报(自然科学版),2019,47(11):1626-1632.
ZHOU Su, ZHI Xue-lei, LIU Dong, et al. A convolutional neural network-based method for small traffic sign detection[J]. Journal of Tongji University(Natural Science), 2019, 47(11): 1626-1632.(in Chinese)
[14] HONG S, ROH B, KIM H, et al. PVANet: lightweight deep neural networks for real-time object detection[EB/OL].(2016-12-09)[2022-07-02]. https:∥arxiv.org/abs/1611.08588.
[15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥ IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
[16] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 7263-7271.
[17] REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Ithaca: Cornell University, 2018.
[18] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]∥Springer. 14th European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
[19] FU Cheng-yang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv, 2017: 20200017371.
[20] RAJENDRAN S P, SHINE L, PRADEEP R, et al. Real-time traffic sign recognition using yolov3 based detector[C]∥IEEE. 10th International Conference on Computing, Communication and Networking Technologies. New York: IEEE, 2019: 1-7.
[21] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark: A multi-class classification competition[C]∥IEEE. 2011 International Joint Conference on Neural Networks. New York: IEEE, 2011: 1453-1460.
[22] ZHANG Hui-bing, QIN Long-fei, LI Jun, et al. Real-time detection method for small traffic signs based on YOLOv3[J]. IEEE Access, 2020, 8: 64145-64156.
[23] ZHANG Hong-yi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL].(2018-04-27)[2022-07-02]. https:∥arxiv.org/abs/1710.09412.
[24] WU Yi-qiang, LI Zhi-yong, CHEN Ying, et al. Real-time traffic sign detection and classification towards real traffic scene[J]. Multimedia Tools and Applications, 2020, 79(25/26): 18201-18219.
[25] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]∥IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
[26] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]∥IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 658-666.
[27] 高 涛,刘梦尼,陈 婷,等,等.结合暗亮通道先验的远近景融合去雾算法[J].西安交通大学学报,2021,55(10):78-86.
GAO Tao, LIU Meng-ni, CHEN Ting, et al. A far and near scene fusion defogging algorithm based on the prior of dark-light channel[J]. Journal of Xi'an Jiaotong University, 2021, 55(10): 78-86.(in Chinese)
[28] ALIK K R. An efficient k'-means clustering algorithm[J]. Pattern Recognition Letters, 2008, 29(9): 1385-1391.
[29] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]∥Springer. 13th European conference on computer vision. Berlin: Springer, 2014: 740-755.
[30] EVERINGHAM M, VAN L, CHRISTOPHER W, et al. The pascal visual object classes(VOC)challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.