[1] 赵冬斌,刘德荣,易建强.基于自适应动态规划的城市交通信号优化控制方法综述[J].自动化学报,2009,35(6):676-681.
ZHAO Dong-bin, LIU De-rong, YI Jian-qiang. An overview on the adaptive dynamic programming based urban city traffic signal optimal control[J]. Acta Automatica Sinica, 2009, 35(6): 676-681.(in Chinese)
[2] 李克强,戴一凡,李升波,等.智能网联汽车(ICV)技术的发展现状及趋势[J].汽车安全与节能学报,2017,8(1):1-14.
LI Ke-qiang, DAI Yi-fan, LI Sheng-bo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14.(in Chinese)
[3] WANG Run-min, ZHANG Xin-rui, XU Zhi-gang, et al. Research on performance and function testing of V2X in a closed test field[J]. Journal of Advanced Transportation, 2021, 2021: 9970978.
[4] HE Qing, HEAD K L, DING Jun. PAMSCOD: platoon-based arterial multi-modal signal control with online data[J]. Transportation Research Part C: Emerging Technologies, 2012, 20(1): 164-184.
[5] FENG Yi-heng, HEAD K L, KHOSHMAGHAM S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 460-473.
[6] YAO Zhi-hong, JIANG Yang-sheng, ZHAO Bin, et al. A dynamic optimization method for adaptive signal control in a connected vehicle environment[J]. Journal of Intelligent Transportation Systems, 2020, 24(2): 184-200.
[7] BANI YOUNES M, BOUKERCHE A. Intelligent traffic light controlling algorithms using vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 5887-5899.
[8] WANG Qin-zheng, YUAN Yun, YANG Xian-feng, et al. Adaptive and multi-path progression signal control under connected vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102965.
[9] AREL I, LIU C, URBANIK T, et al. Reinforcement learning-based multi-agent system for network traffic signal control[J]. IET Intelligent Transport Systems, 2010, 4(2): 128-135.
[10] ISLAM S M A B A, HAJBABAIE A. Distributed coordinated signal timing optimization in connected transportation networks[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 272-285.
[11] CO瘙塁KUN M, BAGGAG A, CHAWLA S. Deep reinforcement learning for traffic light optimization[C]∥IEEE. 2018 IEEE International Conference on Data Mining Workshops. New York: IEEE, 2018: 564-571.
[12] WU Tong, ZHOU Pan, LIU Kai, et al. Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8243-8256.
[13] 杨 澜,赵祥模,吴国垣,等.智能网联汽车协同生态驾驶策略综述[J].交通运输工程学报,2020,20(5):58-72.
YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, et al. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72.(in Chinese)
[14] RAKHA H, KAMALANATHSHARMA R K. Eco-driving at signalized intersections using V2I communication[C]∥IEEE. 2011 14th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2011: 341-346.
[15] ALA M V, YANG Hao, RAKHA H. Modeling evaluation of eco-cooperative adaptive cruise control in vicinity of signalized intersections[J]. Transportation Research Record, 2016, 2559(1): 108-119.
[16] YANG Hao, RAKHA H, ALA M V. Eco-cooperative adaptive cruise control at signalized intersections considering queue effects[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1575-1585.
[17] MANDAVA S, BORIBOONSOMSIN K, BARTH M. Arterial velocity planning based on traffic signal information under light traffic conditions[C]∥IEEE. 2009 12th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2009: 1-6.
[18] BARTH M, MANDAVA S, BORIBOONSOMSIN K, et al. Dynamic eco-driving for arterial corridors[C]∥IEEE. 2011 IEEE Forum on Integrated and Sustainable Transportation System. New York: IEEE, 2011: 182-188.
[19] XIA Hai-tao, BORIBOONSOMSIN K, BARTH M. Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits[J]. Journal of Intelligent Transportation Systems, 2013, 17(1): 31-41.
[20] MAHLER G, VAHIDI A. Reducing idling at red lights based on probabilistic prediction of traffic signal timings[C]∥IEEE. 2012 American Control Conference. New York: IEEE, 2012: 6557-6562.
[21] SEREDYNSKI M, MAZURCZYK W, KHADRAOUI D. Multi-segment green light optimal speed advisory[C]∥IEEE. 2013 IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum. New York: IEEE, 2013: 459-465.
[22] STEBBINS S, HICKMAN M, KIM J, et al. Characterising green light optimal speed advisory trajectories for platoon-based optimisation[J]. Transportation Research Part C: Emerging Technologies, 2017, 82: 43-62.
[23] KAMAL M A S, MUKAI M, MURATA J, et al. Model predictive control of vehicles on urban roads for improved fuel economy[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 831-841.
[24] ALRIFAEE B, JODAR J G, ABEL D. Decentralized predictive cruise control for energy saving in REEV using V2I information for multiple-vehicles[J]. IFAC-PapersOnLine, 2015, 48(15): 320-327.
[25] LI Zhuo-fei, ELEFTERIADOU L, RANKA S. Signal control optimization for automated vehicles at isolated signalized intersections[J]. Transportation Research Part C: Emerging Technologies, 2014, 49: 1-18.
[26] FENG Yi-heng, YU Chun-hui, LIU H X. Spatiotemporal intersection control in a connected and automated vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 364-383.
[27] YU Chun-hui, FENG Yi-heng, LIU H X, et al. Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections[J]. Transportation Research Part B: Methodological, 2018, 112: 89-112.
[28] 王云鹏,郭 戈.城市交叉口车辆速度与交通信号协同优化控制[J].控制与决策,2019,34(11):2397-2406.
WANG Yun-peng, GUO Ge. Joint optimization of vehicle speed and traffic signals at a signalized intersection[J]. Control and Decision, 2019, 34(11): 2397-2406.(in Chinese)
[29] WANG Zi-ran, WU Guo-yuan, BARTH M J. Cooperative eco-driving at signalized intersections in a partially connected and automated vehicle environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 2029-2038.
[30] NIROUMAND R, TAJALLI M, HAJIBABAI L, et al. Joint optimization of vehicle-group trajectory and signal timing: Introducing the white phase for mixed-autonomy traffic stream[J]. Transportation Research Part C: Emerging Technologies, 2020, 116: 102659.
[31] KOONCE P, RODEGERDTS L. Traffic signal timing manual[R]. Washington DC: Federal Highway Administration, 2008.
[32] 秦严严,王 昊,王 炜.智能网联环境下的混合交通流LWR模型[J].中国公路学报,2018,31(11):147-156.
QIN Yan-yan, WANG Hao, WANG Wei. LWR model for mixed traffic flow in connected and autonomous vehicular environments[J]. China Journal of Highway and Transport, 2018, 31(11): 147-156.(in Chinese)
[33] XIAO Lin, WANG Meng, VAN AREM B. Realistic car-following models for microscopic simulation of adaptive and cooperative adaptive cruise control vehicles[J]. Transportation Research Record, 2017, 2623(1): 1-9.
[34] MILANÉS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300.
[35] XIAO Lin, WANG Meng, SCHAKEL W, et al. Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 380-397.
[36] KAMALANATHSHARMA R K, RAKHA H A. Leveraging connected vehicle technology and telematics to enhance vehicle fuel efficiency in the vicinity of signalized intersections[J]. Journal of Intelligent Transportation Systems, 2016, 20(1): 33-44.
[37] ZHAO Wei-ming, NGODUY D, SHEPHERD S, et al. A platoon based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802-821.
[38] XIE Dong-fan, ZHAO Xiao-mei, HE Zhen-bing. Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2060-2071.
[39] KESTING A, TREIBER M. How reaction time, update time, and adaptation time influence the stability of traffic flow[J]. Computer Aided Civil and Infrastructure Engineering, 2008, 23(2): 125-137.
[40] 王 昊,秦严严.网联车混合交通流渐进稳定性解析方法[J].哈尔滨工业大学学报,2019,51(3):88-91.
WANG Hao, QIN Yan-yan. Asymptotic stability analysis of traffic flow mixed with connected vehicles[J]. Journal of Harbin Institute of Technology, 2019, 51(3): 88-91.(in Chinese)