[1] DAI Zhuang, LIU Xiao-yue, CHEN Xi, et al. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses: a dynamic programming approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 114(5): 598-619.
[2] YE Lan-hang, YAMAMOTO T. Modeling connected and autonomous vehicles in heterogeneous traffic flow[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 490(1): 269-277.
[3] 赵祥模,承靖钧,徐志刚,等.基于整车在环仿真的自动驾驶汽车室内快速测试平台[J].中国公路学报,2019,32(6):124-136.
ZHAO Xiang-mo, CHENG Jing-jun, XU Zhi-gang, et al. An indoor rapid-testing platform for autonomous vehicle based on vehicle-in-the-loop simulation[J]. China Journal of Highway and Transport, 2019, 32(6): 124-136.(in Chinese)
[4] 秦严严,张 健,陈凌志,等.手动-自动驾驶混合交通流元胞传输模型[J].交通运输工程学报,2020,20(2):229-238.
QIN Yan-yan, ZHANG Jian, CHEN Ling-zhi, et al. Cell transmission model of mixed traffic flow of manual-automated driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 229-238.(in Chinese)
[5] MIRHELI A, HAJIBABAI L, HAJBABAIE A. Development of a signal-head-free intersection control logic in a fully connected and autonomous vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2018, 92(7): 412-425.
[6] XIAO Lin, WANG Meng, AREM B V. Traffic flow impacts of converting an HOV lane into a dedicated CACC lane on a freeway corridor[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(1): 60-73.
[7] 姚 佼,倪屹聆,戴亚轩.车联网环境对城市快速路驾驶安全的影响评价[J].交通运输研究,2020,6(2):83-90.
YAO Jiao, NI Yi-ling, DAI Ya-xuan. Influence evaluation of internet of vehicles environment on driving safety of urban expressway[J]. Transport Research, 2020, 6(2): 83-90.(in Chinese)
[8] WU Wei, ZHANG Fang-ni, LIU Wei, et al. Modelling the traffic in a mixed network with autonomous-driving expressways andnon-autonomous local streets[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 134(2): 101855.
[9] WANG Yun-peng, WEI Lei, CHEN Peng. Trajectory reconstruction for freeway traffic mixed with human-driven vehicles and connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2020, 111(2): 135-155.
[10] CHEN Jian-zhong, ZHOU Yang, LIANG Huan. Effects of ACC and CACC vehicles on traffic flow based on an improved variable time headway spacing strategy[J]. IET Intelligent Transport Systems, 2019, 13(9): 1365-1373.
[11] LI Lin-heng, GAN Jing, JI Xin-kai, et al. Dynamic driving risk potential field model under the connected and automated vehicles environment and its application in car-following modeling[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, DOI: 10.1109/TITS.2020.3008284.
[12] BEKIARIS-LIBERIS N, RONCOLI C, PAPAGEORGIOU M. Highway traffic state estimation per lane in the presence of connected vehicles[J]. Transportation Research Part B: Methodological, 2017, 106(12): 1-28.
[13] HU Xiang-wang, SUN Jian. Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 111-125.
[14] ZHU Feng, UKKUSURI S V. An optimal estimation approach for the calibration of the car-following behavior of connected vehicles in a mixed traffic environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(2): 282-291.
[15] ZHAO Xiang-mo, WANG Zhen, XU Zhi-gang, et al. Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle[J]. Transportation Research Part C: Emerging Technologies, 2020, 114(5): 205-224.
[16] SUN Jie, ZHENG Zu-duo, SUN Jian. Stability analysis methods and their applicability to car-following models in conventional and connected environments[J]. Transportation Research Part B: Methodological, 2018, 109(3): 212-237.
[17] ALI Y, ZHENG Zu-duo, HAQUE M M, et al. A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment[J]. Transportation Research Part C: Emerging Technologies, 2019, 106(9): 220-242.
[18] SHI Xiao-wei, LI Xiao-peng. Constructing a fundamental diagram for traffic flow with automated vehicles: methodology and demonstration[J]. Transportation Research Part B: Methodological, 2021, 150: 279-292.
[19] YANG Da, ZHENG Shi-yu, WEN Cheng, et al. A dynamic lane-changing trajectory planning model for automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2018, 95(10): 228-247.
[20] 张 毅,姚丹亚,李 力,等.智能车路协同系统关键技术与应用[J].交通运输系统工程与信息,2021,21(5):40-51.
ZHANG Yi, YAO Dan-ya, LI Li, et al.Technologies and applications for intelligent vehicle-infrastructure cooperation systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 40-51.(in Chinese)
[21] 徐志刚,李金龙,赵祥模,等.智能公路发展现状与关键技术[J].中国公路学报,2019,32(8):1-24.
XU Zhi-gang, LI Jin-long, ZHAO Xiang-mo, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway and Transport, 2019, 32(8): 1-24.(in Chinese)
[22] XIE Yuan-chang, ZHANG Hui-xing, GARTNER N H, et al. Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment[J]. Journal of Intelligent Transportation Systems, 2017, 21(2): 136-147.
[23] LETTER C, ELEFTERIADOU L. Efficient control of fully automated connected vehicles at freeway merge segments[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 190-205.
[24] LIU Hao, KAN Xing-an, SHLADOVER S E, et al. Impact of cooperative adaptive cruise control on multilane freeway merge capacity[J]. Journal of Intelligent Transportation Systems, 2018, 22(3): 263-275.
[25] DONG Chang-yin, WANG Hao, LI Ye, et al.Route control strategies for autonomous vehicles exiting to off-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 3104-3116.
[26] 杨 敏,王立超,张 健,等.面向智慧高速的合流区协作车辆冲突解脱协调方法[J].交通运输工程学报,2020,20(3):217-224.
YANG Min, WANG Li-chao, ZHANG Jian, et al. Collaborative method of vehicle conflict resolution in merging area for intelligent expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 217-224.(in Chinese)
[27] SUN Zhan-bo, HUANG Tian-yu, ZHANG Pei-tong. Cooperative decision-making for mixed traffic: a ramp merging example[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102764.
[28] YANG Da, QIU Xiao-ping, MA Li-na, et al. Cellular automata-based modeling and simulation of a mixed traffic flow of manual and automated vehicles[J]. Transportation Research Record, 2017(2622): 105-116.
[29] LIU Mei-yu, SHI Jing. A cellular automata traffic flow model combined with a BP neural network based microscopic lane changing decision model[J]. Journal of Intelligent Transportation Systems, 2019, 23(4): 309-318.
[30] 余荣杰,田 野,孙 剑.高等级自动驾驶汽车虚拟测试:研究进展与前沿[J].中国公路学报,2020,33(11):125-138.
YU Rong-jie, TIAN Ye, SUN Jian. Highly automated vehicle virtual testing: a review of recent developments and research frontiers[J]. China Journal of Highway and Transport, 2020, 33(11): 125-138.(in Chinese)
[31] 宗 芳,王 猛,曾 梦,等.考虑多前车作用势的混行交通流车辆跟驰模型[J].交通运输工程学报,2022,22(1):250-262.
ZONG Fang, WANG Meng, ZENG Meng, et al. Vehicle-following model in mixed traffic flow considering interaction potential of multiple front vehicles[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 250-262.(in Chinese)