[1] 李 立,徐志刚,赵祥模,等.智能网联汽车运动规划方法研究综述[J].中国公路学报,2019,32(6):20-33.
LI Li, XU Zhi-gang, ZHAO Xiang-mo, et al. Review of motion planning methods of intelligent connected vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 20-33.(in Chinese)
[2] 采国顺,刘昊吉,冯吉伟,等.智能汽车的运动规划与控制研究综述[J].汽车安全与节能学报,2021,12(3):279-297.
CAI Guo-shun, LIU Hao-ji, FENG Ji-wei, et al. Review on the research of motion planning and control for intelligent vehicles[J]. Journal of Automotive Safety and Energy, 2021, 12(3): 279-297.(in Chinese)
[3] 李 柏,张友民,邵之江.自动驾驶车辆运动规划方法综述[J].控制与信息技术,2018(6):1-6.
LI Bai, ZHANG You-min, SHAO Zhi-jiang. Motion planning methodologies for automated vehicles:a critical review[J]. Control and Information Technology, 2018(6): 1-6.(in Chinese)
[4] 杨 澜,赵祥模,吴国垣,等.智能网联汽车协同生态驾驶策略综述[J].交通运输工程学报,2020,20(5):58-72.
YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, et al. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72.(in Chinese)
[5] 王殿海,金 盛.车辆跟驰行为建模的回顾与展望[J].中国公路学报,2012,25(1):115-127.
WANG Dian-hai, JIN Sheng. Review and outlook of modeling of car following behavior[J]. China Journal of Highway and Transport, 2012, 25(1): 115-127.(in Chinese)
[6] ZHENG Zu-duo. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60: 16-32.
[7] SCHREIER M, WILLERT V, ADAMY J. An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2751-2766.
[8] SIMMONS R, BROWNING B, ZHANG Yi-lu, et al. Learning to predict driver route and destination intent[C]∥IEEE. 2006 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2006: 127-132.
[9] RATHORE P, KUMAR D, RAJASEGARAR S, et al. A scalable framework for trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3860-3874.
[10] ALTCHÉ F, DE LA FORTELLE A. An LSTM network for highway trajectory prediction[C]∥IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 353-359.
[11] ZHANG Xiao-hui, SUN Jie, QI Xiao, et al. Simultaneous modeling of car-following and lane-changing behaviors using deep learning[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 287-304.
[12] XING Yang, LYU Chen, MO Xiao-yu, et al. Toward safe and smart mobility: energy-aware deep learning for driving behavior analysis and prediction of connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4267-4280.
[13] CHEN Meng, ZUO Yi-xuan, JIA Xiao-yi, et al. CEM: a convolutional embedding model for predicting next locations[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7): 3349-3358.
[14] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]∥IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 961-971.
[15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[16] 赵祥模,连心雨,刘占文,等.基于MM-STConv的端到端自动驾驶行为决策模型[J].中国公路学报,2020,33(3):170-183.
ZHAO Xiang-mo, LIAN Xin-yu, LIU Zhan-wen, et al. End-to-end autonomous driving-behavior decision model based on MM-STConv[J]. China Journal of Highway and Transport, 2020, 33(3): 170-183.(in Chinese)
[17] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]∥IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2018: 1549-1557.
[18] MAHMUDS M, FERREIRA L, HOQUE M S, et al. Application of proximal surrogate indicators for safety evaluation: a review of recent developments and research needs[J]. IATSS Research, 2017, 41(4): 153-163.
[19] PINNOWJ, MASOUD M, ELHENAWY M, et al. A review of naturalistic driving study surrogates and surrogate indicator viability within the context of different road geometries[J]. Accident Analysis and Prevention, 2021, 157: 106185.
[20] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]∥IEEE. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. New York: IEEE, 2014: 1724-1734.
[21] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]∥MIT Press. 28th Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 1-9.
[22] 刘 创,梁 军.基于注意力机制的车辆运动轨迹预测[J].浙江大学学报(工学版),2020,54(6):1156-1163.
LIU Chuang, LIANG Jun. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(6): 1156-1163.(in Chinese)
[23] HASAN M, SOLERNOU A, PASCHALIDIS E, et al. Maneuver-aware pooling for vehicle trajectory prediction[J]. arXiv, 2021: 20210095519.