[1] 刘 静,关 伟.交通流预测方法综述[J].公路交通科技,2004,21(3):82-85.
LIU Jing, GUAN Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3): 82-85.(in Chinese)
[2] VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5): 307-318.
[3] XIE Yuan-chang, ZHANG Yun-long, YE Zhi-rui. Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(5): 326-334.
[4] WILLIAMS B M. Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling[J]. Transportation Research Record, 2001(1776): 194-200.
[5] WU Ren-fei, ZHENG Xun-jia, XU Yong-neng, et al. Modified driving safety field based on trajectory prediction model for pedestrian-vehicle collision[J]. Sustainability, 2019, 11(22): 6254.
[6] CHENG Shi-fen, LU Feng, PENG Peng, et al. Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71: 186-198.
[7] HONG W C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm[J]. Neurocomputing, 2011, 74(12/13): 2096-2107.
[8] YIN Hong-bin, WONG S C, XU Jian-min, et al. Urban traffic flow prediction using a fuzzy-neural approach[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(2): 85-98.
[9] 窦慧丽,刘好德,吴志周,等.基于小波分析和ARIMA模型的交通流预测方法[J].同济大学学报(自然科学版),2009,37(4):486-489,494.
DOU Hui-li, LIU Hao-de, WU Zhi-zhou, et al. Study of traffic flow prediction based on wavelet analysis and autoregressive integrated moving average model [J]. Journal of Tongji University(Natural Science), 2009, 37(4): 486-489, 494.(in Chinese)
[10] JIA Yu-han, WU Jian-ping, DU Yi-man. Traffic speed prediction using deep learning method[C]∥IEEE. 2016 IEEE 19th International Conference on Intelligent TransportationSystems(ITSC). New York: IEEE, 2016: 1217-1222.
[11] LYU Yi-sheng, DUAN Yan-jie, KANG Wen-wen, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
[12] MAO Pei-pei, JI Xin-kai, QU Xu, et al. Deep learning based vehicle position estimation for human drive vehicle at connected freeway[C]∥IEEE. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems(ITSC). New York: IEEE, 2020: 1-6.
[13] MA Xiao-lei, TAO Zhi-min, WANG Yin-hai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197.
[14] GAO Hong-bo, SU Hang, CAI Ying-feng, et al. Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections[J]. Science China Information Sciences, 2021, 64(7): 1-13.
[15] FU Rui, ZHANG Zuo, LI Li. Using LSTM and GRU neural network methods for traffic flow prediction[C]∥IEEE. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation(YAC). New York: IEEE, 2016: 324-328.
[16] CUI Zhi-you, KE Rui-min, PU Zi-yuan, et al. Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction[EB/OL].(2019-11-23)[2021-12-10].https://arxiv.org/abs/1801.02143.
[17] YANG Bai-lin, SUN Shu-lin, LI Jian-yuan, et al. Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320-327.
[18] WU Yuan-kai, TAN Hua-chun, QIN Ling-qiao, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180.
[19] YU Hai-yang, WU Zhi-hai, WANG Shu-qin, et al. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017, 17(7): 1501.
[20] JIN Wen-wei, LIN You-fang, WU Zhi-hao, et al. Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction[C]∥ICCDA. Proceedings of the 2nd International Conference on Compute and Data Analysis. New York: ICCDA, 2018: 28-35.
[21] YU Bing, YIN Hao-teng, ZHU Zhan-xing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]∥IJCAI. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm: IJCAI, 2017: 3634-3640.
[22] 王增光,王海起,陈海波.基于图卷积网络的短时交通速度预测[J].计算机与现代化,2021(9):99-105.
WANG Zeng-guang,WANG Hai-qi,CHEN Hai-bo.Short-term traffic speed prediction based on graph convolutional network [J].Computer and Modernization, 2021(9): 99-105.(in Chinese)
[23] ZHAO Ling, SONG Yu-jiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
[24] YAN Si-jie, XIONG Yuan-jun, LIN Da-hua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]∥AAAI. Proceedings of the AAAI Thirty-second AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 12328.
[25] 张懿扬,陈 志,岳文静,等.基于时空图卷积网络的视频中人物姿态分类[J].计算机技术与发展,2021,31(10):70-75.
ZHANG Yi-yang, CHEN Zhi, YUE Wen-jing, et al. Human pose classification in video based on spatial temporal graph convolutional networks[J]. Computer Technology and Development, 2021, 31(10): 70-75.(in Chinese)
[26] 张蔚澜,齐 华,李 胜.时空图卷积网络在人体异常行为识别中的应用[J/OL].计算机工程与应用,(2021-11-03)[2021-12-10].http:∥kns.cnki.net/kcms/detail/11.2127.tp.20211103.1055.002.html.
ZHANG Wei-lan, QI Hua, LI Sheng. Application of spatial temporal graph convoutional networks in human abnormal behavior recognition[J/OL]. Computer Engineering and Applications,(2021-11-03)[2021-12-10].http:∥kns.cnki.net/kcms/detail/11.2127.tp.20211103.1055.002.html.(in Chinese)
[27] YE Jie-xia, ZHAO Juan-juan, YE Ke-jiang, et al. How to build a graph-based deep learning architecture in traffic domain: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(5): 3904-3924.
[28] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL].(2014-05-21)[2021-12-10]. https:∥doi.org/10.48550/arXiv.1312.6203.
[29] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]∥ICLR. Proceedings of the 5th International Conference on Learning Representations. Toulon: ICLR, 2017: 1-14.
[30] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]∥ACM. Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 3844-3852.
[31] Wisconsin Traffic Operations and Safety Laboratory. The WisTransportal data hub information system[EB/OL].(2016-12-18)[2021-12-10].http:∥transportal.cee.wisc.edu/.