[1] 何胜学.基于两阶段行程时间的交通流分配理论[J].交通运输系统工程与信息,2018,18(1):139-144.
HE Sheng-xue. Traffic assignment theory based on two-stage travel time[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 139-144.(in Chinese)
[2] 王洪德,曹英浩,崔铁军,等.基于时间递推与有师学习的交通路径动态诱导[J].中国公路学报,2014,27(1):94-99.
WANG Hong-de, CAO Ying-hao, CUI Tie-jun, et al. Traffic route dynamic guidance based on time recursion and supervised learning[J]. China Journal of Highway and Transport, 2014, 27(1): 94-99.(in Chinese)
[3] 张建旭,蒋 燕.基于局部路网交通流重分配的路段关键度计算[J].交通运输系统工程与信息,2016,16(1):105-110.
ZHANG Jian-xu, JIANG Yan. Criticality calculation of road links based on local network traffic flow redistribution[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(1): 105-110.(in Chinese)
[4] 徐 旭,郑伟舜.蚁群算法下交通流分配对路网结构可靠度的影响[J].重庆交通大学学报(自然科学版),2017,36(5):91-97,120.
XU Xu, ZHENG Wei-shun. Impact of traffic volume distribution on reliability of road network structure by using ant colony algorithm[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2017, 36(5): 91-97, 120.(in Chinese)
[5] 段宗涛,李 莹,郑西彬,等.基于Hadoop平台的实时多路径交通流分配算法[J].中国公路学报,2014,27(9):98-104.
DUAN Zong-tao, LI Ying, ZHENG Xi-bin, et al. Real-time multi-path traffic flow assignment algorithm based on Hadoop platform[J]. China Journal of Highway and Transport, 2014, 27(9): 98-104.(in Chinese)
[6] SORIGUERA F, MARTÍNEZ I, SALA M, et al. Effects of low speed limits on freeway traffic flow[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 257-274.
[7] VAN WAGENINGEN-KESSELS F, WILSON R E. Lane distribution estimation for heterogeneous traffic flows[J]. Transportation Research Procedia, 2015, 10: 13-20.
[8] 秦严严,王 昊,王 炜,等.不同CACC渗透率条件下的混合交通流稳定性分析[J].交通运输系统工程与信息,2017,17(4):63-69,104.
QIN Yan-yan, WANG Hao, WANG Wei, et al. Mixed traffic flow string stability analysis for different CACC penetration ranges[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 63-69, 104.(in Chinese)
[9] 赵 朋,王建伟,孙茂棚,等.高速公路突发事件救援车辆诱导[J].中国公路学报,2018,31(9):175-181.
ZHAO Peng, WANG Jian-wei, SUN Mao-peng, et al. Vehicle scheduling for mountainous expressway traffic emergency[J]. China Journal of Highway and Transport, 2018, 31(9): 175-181.(in Chinese)
[10] 陈 芳,张卫华,丁 恒,等.基于出行者路径选择行为的VMS诱导策略研究[J].系统工程理论与实践,2018,38(5):1263-1276.
CHEN Fang, ZHANG Wei-hua, DING Heng, et al. Research on VMS inducing strategy based on the route selection behavior of travelers[J]. Systems Engineering—Theory and Practice, 2018, 38(5): 1263-1276.(in Chinese)
[11] 干宏程,杨珍珍.VMS行程时间诱导效益仿真算法[J].交通运输工程学报,2012,12(1):121-126.
GAN Hong-cheng, YANG Zhen-zhen. Inductive benefit simulation algorithm of VMS travel time[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 121-126.(in Chinese)
[12] 梁 伟,张 毅,胡坚明.基于局部连通性的在途动态路径诱导方法[J].交通运输系统工程与信息,2018,18(1):59-65.
LIANG Wei, ZHANG Yi, HU Jian-ming. Dynamic en-route guidance approach based on local-connectivity[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 59-65.(in Chinese)
[13] TIAN Da-xin, HU Jun-jie, SHENG Zheng-guo, et al. Swarm intelligence algorithm inspired by route choice behavior[J]. Journal of Bionic Engineering, 2016, 13(4): 669-678.
[14] XIE Xiao-feng, WANG Zun-jing. Cooperative group optimization with ants(CGO-AS): leverage optimization with mixed individual and social learning[J]. Applied Soft Computing, 2017, 50: 223-234.
[15] 杨临涧,赵祥模,贺冰花,等.随机用户均衡交通分配问题的蚁群优化算法[J].交通运输工程学报,2018,18(3):189-198.
YANG Lin-jian, ZHAO Xiang-mo, HE Bing-hua, et al. An ant colony optimization algorithm of stochastic user equilibrium traffic assignment problem[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 189-198.(in Chinese)
[16] 徐建闽,王 钰,林培群.大数据环境下的动态最短路径算法[J].华南理工大学学报(自然科学版),2015,43(10):1-7.
XU Jian-min, WANG Yu, LIN Pei-qun. A dynamic shortest path algorithm for big data[J]. Journal of South China University of Technology(Natural Science Edition), 2015, 43(10): 1-7.(in Chinese)
[17] 马东超,武 涛,王晓亮,等.个体开销受限的交通流优化分配方法[J].中国公路学报,2016,29(7):134-142.
MA Dong-chao, WU Tao, WANG Xiao-liang, et al. Traffic optimized assignment method with limited individual cost[J]. China Journal of Highway and Transport, 2016, 29(7): 134-142.(in Chinese)
[18] SENGE S, WEDDE H F. Bee-inpired road traffic control as an example of swarm intelligence in cyber-physical systems[C]∥IEEE. 2012 38th Euromicro Conference on Software Engineering and Advanced Applications. New York: IEEE, 2012: 258-265.
[19] KUMAR P M,DEVI G U, MANOGARAN G, et al. Ant colony optimization algorithm with Internet of vehicles for intelligent traffic control system[J]. Computer Networks, 2018, 144: 154-162.
[20] POOLE A, KOTSIALOS A. Swarm intelligence algorithms for macroscopic traffic flow model validation with automatic assignment of fundamental diagrams[J]. Applied Soft Computing, 2016, 38: 134-150.
[21] LISANGAN E A, SUMARTA S C. Route selection based on real time traffic condition using ant colony system and fuzzy inference system[C]∥IEEE. 2017 3rd International Conference on Science in Information Technology(ICSITech). New York: IEEE, 2017: 66-71.
[22] YANG A, NAEEM W, FEI Min-rui. Decentralised formation control and stability analysis for multi-vehicle cooperative manoeuvre[J]. IEEE/CAA Journal of Automatica Sinica, 2014, 1(1): 92-100.
[23] 田大新,康 璐.基于鱼群效应的无人驾驶车辆编队算法研究[J].无人系统技术,2018,1(4):62-67.
TIAN Da-xin, KANG Lu. Research on algorithm of unmanned vehicle formation based on fish school[J]. Unmanned Systems Technology, 2018, 1(4): 62-67.(in Chinese)
[24] ERKE A, SAGBERG F, HAGMAN R. Effects of route guidance variable message signs(VMS)on driver behaviour[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2007, 10(6): 447-457.
[25] LI Yan-song, LUO Qian, LIU Jia-jia, et al. TSP security in intelligent and connected vehicles: challenges and solutions[J]. IEEE Wireless Communications, 2019, 26(3): 125-131.
[26] ZHU Z, LOO J, CHEN Y, et al. Recent advances in connected vehicles via information-centric networking[C]∥IET. IET International Conference on Intelligent and Connected Vehicles(ICV 2016). London: IET, 2016: 1162.
[27] 赵庆迁,王亚萍,雷建明,等.基于饱和度的路网交通态势实时辨识[J].交通科学与工程,2019,35(4):104-110.
ZHAO Qing-qian, WANG Ya-ping, LEI Jian-ming, et al. Real-time identification of the road network traffic state based on saturation[J]. Journal of Transport Science and Engineering, 2019, 35(4): 104-110.(in Chinese)
[28] YADAV R N, YADAVA V, SINGH G K. Multi-objective optimization of process parameters in electro-discharge diamond face grinding based on ANN-NSGA-Ⅱ hybrid technique[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 319-332.
[29] 王春林,冯一鸣,叶 剑,等.基于RBF神经网络与NSGA-Ⅱ算法的渣浆泵多目标参数优化[J].农业工程学报,2017,33(10):109-115.
WANG Chun-lin, FENG Yi-ming, YE Jian, et al. Multi-objective parameters optimization of centrifugal slurry pump based on RBF neural network and NSGA-Ⅱ genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 109-115.(in Chinese)
[30] ZHANG Yong, GONG Dun-wei, ZHANG Jian-hua. Robot path planning in uncertain environment using multi-objective particle swarm optimization[J]. Neurocomputing, 2013, 103: 172-185.
[31] WANG Lin, YANG Bo, LI Yi, et al. A novel improvement of particle swarm optimization using dual factors strategy[C]∥IEEE. 2014 IEEE Congress on Evolutionary Computation(CEC). New York: IEEE, 2014: 183-189.