[1] 张 毅,姚丹亚,李 力,等.智能车路协同系统关键技术与应用[J].交通运输系统工程与信息,2021,21(5):40-51.
ZHANG Yi, YAO Dan-ya, LI Li, et al. Technology and application of intelligent vehicle-infrastructure cooperation systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 40-51.(in Chinese)
[2] 田 彬,赵祥模,徐志刚,等.车路协同条件下智能网联高速公路通行效率信息自适应分发协议:NRT-V2X[J].中国公路学报,2019,32(6):293-307.
TIAN Bin, ZHAO Xiang-mo, XU Zhi-gang, et al. NRT-V2X:adaptive data dissemination protocol for traffic efficiency of connected and automated highways[J]. China Journal of Highway and Transport, 2019, 32(6): 293-307.(in Chinese)
[3] PETTY K F, NOEIMI H, SANWAL K, et al. The freeway service patrol evaluation project: database support programs, and accessibility[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(2): 71-85.
[4] HIROSHIMA Y. Development of collision danger reasoning algorithm, Part 5: the basic technology for ASV(advanced safety vehicle)[J]. JSAE Review, 1995, 16(1): 221-224.
[5] FUKUSHIMA M. The latest trend of V2X driver assistance systems in Japan[J]. Computer Networks, 2011, 55(14): 3134-3141.
[6] WEIB C. V2X communication in Europe—from research projects towards standardization and field testing of vehicle communication technology[J]. Computer Networks, 2011, 55(14): 3103-3119.
[7] 邹智军,杨东援.动态交通状态微观仿真技术初探[J].同济大学学报(自然科学版),1999,27(3):305-308.
ZOU Zhi-jun, YANG Dong-yuan. Preliminary study on dynamic traffic microsimulation[J]. Journal of Tongji University(Natural Science), 1999, 27(3): 305-308.(in Chinese)
[8] CHUNG-MAN HO C M, GENTLE J E. A comparison of clock pulse and event algorithms for simulation of traffic flow[J]. ACM SIGSIM Simulation Digest, 1976, 8(1): 53-55.
[9] WADA S, HAYAKAWA H. Kink solution in a fluid model of traffic flow[J]. Journal of the Physical Society of Japan, 1998, 67(3): 763-766.
[10] DEL CASTILLO J M, PINTADO P, BENITEZ F G. The reaction-time of drivers and the stability of traffic flow[J]. Transportation Research Part B: Methodological, 1994, 28(1): 35-60.
[11] PAPAGEORGIOU M. Some remarks on macroscopic traffic flow modelling[J]. Transportation Research Part A: Policy and Practice, 1998, 32(5): 323-329.
[12] DANIOVIACˇG P, JANACˇGAARˇGÍKOVÁ E, RÁMEK J, et al. Fire spread models and tunnel traffic & operation simulator[J]. Procedia Engineering, 2017, 19(2): 92-95.
[13] KRONJÄGER W, KONHÄUSER P. Applied traffic flow simulation[J]. IFAC Proceedings Volumes, 1997, 30(8): 777-780.
[14] PIPES L A. An operational analysis of traffic dynamics[J]. Journal of Applied Physics, 1953, 24(3): 274-281.
[15] FUKUI M, ISHIBASH Y. Traffic flow in 1D cellular automaton model including cars moving with high speed[J]. Journal of the Physical Society of Japan, 1996, 65(6): 1868-1870.
[16] KRAUSS, WAGNER P, GAWRON C. Metastable states in a microscopic model of traffic flow[J]. Physical Review E, 1997, 55(5): 5597-5602.
[17] BARLOVIC R, SANTEN L, SCHADSCHNEIDER A, et al. Metastable states in cellular automata for traffic flow[J]. The European Physical Journal B—Condensed Matter and Complex Systems, 1998, 5(3): 793-800.
[18] WONG S C, WONG W T, LEUNG C M, et al. Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control[J]. Transportation Research Part B: Methodological, 2002, 36(4): 291-312.
[19] PARK B B, SCHNEEBERGER J D. Microscopic simulation model calibration and validation: case study of VISSIM simulation model for a coordinated actuated signal system[J]. Transportation Research Record, 2003(1856): 185-192.
[20] KARAGIANNIS G, ALTINTAS O, EKICI E, et al. Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions[J]. IEEE Communications Surveys and Tutorials, 2011, 13(4): 584-616.
[21] MANIVANNAN P V, RAMAKANTH P. Vision based intelligent vehicle steering control using single camera for automated highway system[J]. Procedia Computer Science, 2018, 133: 839-846.
[22] VIVO G, DALMASSO P, VERNACCHIA F. The European Integrated Project “SAFESPOT”—How ADAS applications co-operate for the driving safety[C]∥IEEE. 2007 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2007: 534-539.
[23] SIKDAR B. Comparison of broadcasting schemes for infrastructure to vehicular communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 492-502.
[24] 张 含,蔡伯根,上官伟,等.基于多分辨率建模的车路协同系统仿真场景设计与实现[J].系统仿真技术,2013,9(1):52-60.
ZHANG Han, CAI Bai-gen, SHANGGUAN Wei, et al. MR-based CVIS scenario design and implementation[J]. System Simulation Technology, 2013, 9(1): 52-60.(in Chinese)
[25] GIPPS P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B: Methodological, 1981, 15(2): 105-111.
[26] PETROV P, NASHASHIBI F. Modeling and nonlinear adaptive control for autonomous vehicle overtaking[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1643-1656.
[27] BUTAKOV V A, IOANNOU P. Personalized driver/vehicle lane change models for ADAS[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4422-4431.
[28] 蔡伯根,王丛丛,上官伟,等.车路协同系统信息交互仿真方法[J].交通运输工程学报,2014,14(3):111-119.
CAI Bai-gen, WANG Cong-cong, SHANGGUAN Wei, et al. Simulation method of information interaction in CVIS[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 111-119.(in Chinese)
[29] TOUTOUH J, GARCÍA-NIETO J, ALBA E. Intelligent OLSR routing protocol optimization for VANETs[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1884-1894.
[30] KHOKHAR R H, NGADI M A, LATIFF M S, et al. Multi-criteria receiver self-election scheme for optimal packet forwarding in vehicular ad hoc networks[J]. International Journal of Computers Communication and Control, 2014, 7(5): 865.
[31] 周连科,左德承,崔 刚,等.考虑节点交通特性的VANET分簇广播协议[J].高技术通讯,2012(5):468-476.
ZHOU Lian-ke, ZUO De-cheng, CUI Gang, et al. A node-traffic characteristics considered clustering broadcast protocol for VANETs[J]. Chinese High Technology Letters, 2012(5): 468-476.(in Chinese)
[32] 李四辉,蔡伯根,上官伟,等.车路协同系统仿真信息多分辨率交互方法[J].交通运输系统工程与信息,2014,14(6):50-57.
LI Si-hui, CAI Bai-gen, SHANGGUAN Wei, et al. Multi-resolution information exchange method in cooperation vehicle-infrastructure system[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 50-57.(in Chinese)
[33] CHENG S T, HORNG G J, CHOU C L. Using cellular automata to form car society in vehicular ad hoc networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1374-1384.
[34] KALRA N, PADDOCK S M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability?[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 182-193.
[35] BRIEFS U. Mcity grand opening[J]. Research Review, 2015, 46(3): 1-2.
[36] XU Hui-le, ZHANG Yi, LI Li, et al. Cooperative driving at unsignalized intersections using tree search[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4563-4571.
[37] GUO Qiang-qiang, BAN Xue-gang. Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium[J]. Transportation Research Part B: Methodological, 2020, 136: 87-109.
[38] GHIASI A, HUSSAIN O, QIAN Zhen, et al. A mixed traffic capacity analysis and lane management model for connected automated vehicles: a Markov chain method[J]. Transportation Research Part B: Methodological, 2017, 106: 266-292.
[39] YANG Chao, LOU Wei, LIU Yi, et al. Resource allocation for edge computing-based vehicle platoon on freeway: a contract-optimization approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15988-16000.
[40] XU Li-wei, ZHUANG Wei-chao, YIN Guo-dong, et al. Energy-oriented cruising strategy design of vehicle platoon considering communication delay and disturbance[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 34-53.
[41] WANG Zhu-wei, GAO Yu, FANG Chao, et al. Optimal control design for connected cruise control with stochastic communication delays[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15357-15369.
[42] ZHONG Zi-jia, LEE J Y. The effectiveness of managed lane strategies for the near-term deployment of cooperative adaptive cruise control[J]. Transportation Research Part A: Policy and Practice, 2019, 129: 257-270.
[43] GE J I, OROSZ G. Connected cruise control among human-driven vehicles: experiment-based parameter estimation and optimal control design[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 445-459.
[44] HAO Liu, KAN Xing-an, SHLADOVER S E, et al. Modeling impacts of cooperative adaptive cruise control on mixed traffic flow in multi-lane freeway facilities[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 261-279.
[45] ZHANG Lin-jun. Cooperative adaptive cruise control in mixed traffic with selective use of vehicle-to-vehicle communication[J]. IET Intelligent Transport Systems, 2018, 12(10): 1243-1254.
[46] XIAO Lin, WANG Meng, SCHAKEL W, et al. Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 380-397.
[47] GONG Si-yuan, DU Li-li. Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles[J]. Transportation Research Part B: Methodological, 2018, 116: 25-61.
[48] LIN Gui-hua, HU Yu, ZOU Yuan-yang. A mixed-mode
traffic assignment model with new time-flow impedance function[J]. International Journal of Modern Physics B, 2018, 32(3): 173-185.
[49] HUANG Dong-dong, CUI Miao, ZHANG Guang-chi, et al. Trajectory optimization and resource allocation for UAV base stations under in-band backhaul constraint[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020: 831-845.
[50] 柴琳果,蔡伯根,上官伟,等.联网智能车运动学仿真基础环境构建方法[J].华南理工大学学报(自然科学版),2018,46(1):66-77.
CHAI Lin-guo, CAI Bai-gen, SHANGGUAN Wei, et al. A construction approach based on kinematic simulation environment for networked intelligent vehicle[J]. Journal of South China University of Technology(Natural Science Edition), 2018, 46(1): 66-77.(in Chinese)
[51] CHAI Lin-guo, CAI Bai-gen, SHANGGUAN Wei, et al. Connected and autonomous vehicles coordinating approach at intersection based on space-time slot[J]. Transportmetrica A: Transport Science, 2018, 14(10): 929-951.
[52] 陈俊杰,蔡伯根,上官伟,等.双向双车道超车行为的智能车队间隙控制优化[J].交通运输工程学报,2019,19(2):178-190.
CHEN Jun-jie, CAI Bai-gen, SHANGGUAN Wei, et al. Slot control optimization of intelligent platoon for dual-lane two-way overtaking behavior[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 178-190.(in Chinese)
[53] FENG Yi-heng, YU Chun-hui, XU Shao-bing, et al. An augmented reality environment for connected and automated vehicle testing and evaluation[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium(IV). New York: IEEE, 2018: 1549-1554.
[54] QIU Wei-zhi, SHANGGUAN Wei, CAI Bai-gen, et al. Advance estimate-based traffic state synchronization for parallel testing[C]∥IEEE. 2020 IEEE 23rd International Conference on Intelligent Transportation System. New York: IEEE, 2020: 1-6.
[55] QIU Wei-zhi, SHANGGUAN Wei, CHAI Lin-guo, et al. Parallel hierarchical control-based efficiency enhancement for large-scale virtual reality traffic simulation[J]. IEEE Intelligent Transportation Systems Magazine, 2021, DOI: 10.1109/MITS.2021.3051473.
[56] LI Li, WANG Xiao, WANG Kun-feng, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): 4106.