[1] LEACH F, KALGHATGI G, STONE R, et al. The scope for improving the efficiency and environmental impact of internal combustion engines[J]. Transportation Engineering, 2020, 1: 100005.
[2] DOLATABADI N, FORDER M, MORRIS N, et al. Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction[J]. Applied Energy, 2020, 259: 114129.
[3] TARTAKOVSKY L, SHEINTUCH M. Fuel reforming in internal combustion engines[J]. Progress in Energy and Combustion Science, 2018, 67: 88-114.
[4] RAHMANI R, RAHNEJAT H, FITZSIMONS B, et al.The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction[J]. Applied Energy, 2017, 191: 568-581.
[5] MISHRA P C. A review of piston compression ring tribology[J]. Tribology in Industry, 2014, 36(3): 269-280.
[6] GACHOT C, ROSENKRANZ A, HSU S M, et al. A critical assessment of surface texturing for friction and wear improvement[J]. Wear, 2017, 372/373: 21-41.
[7] HE Yu, ZOU Ping, ZHU Zhi-wei, et al. Design and application of a flexure-based oscillation mechanism for surface texturing[J]. Journal of Manufacturing Processes, 2018, 32: 298-306.
[8] SUNDARARAJAN G, JOSHI S V, KRISHNA L R. Engineered surfaces for automotive engine and power train components[J]. Current Opinion in Chemical Engineering, 2016, 11: 1-6.
[9] USMAN A, PARK C W. Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: warm operating conditions[J]. Tribology International, 2016, 99: 224-236.
[10] WAN Shan-hong, LI Dong-shan, ZHANG Guang-an, et al. Comparison of the scuffing behaviour and wear resistance of candidate engineered coatings for automotive piston rings[J]. Tribology International, 2017, 106: 10-22.
[11] GU Chun-xing, MENG Xiang-hui, ZHANG Di. Analysis of the coated and textured ring/liner conjunction based on a thermal mixed lubrication model[J]. Friction, 2018, 6(4): 420-431.
[12] WONG V W, TUNG S C. Overview of automotive engine friction and reduction trends—effects of surface, material, and lubricant-additive technologies[J]. Friction, 2016, 4(1): 1-28.
[13] DURONIO F, DE VITA A, MONTANARO A, et al. Gasoline direct injection engines—a review of latest technologies and trends. Part 2[J]. Fuel, 2020, 265: 116947.
[14] 吕延军,康建雄,张永芳,等.内燃机活塞-缸套系统减摩抗磨研究进展[J].交通运输工程学报,2020,20(4):21-34.LYU Yan-jun, KANG Jian-xiong, ZHANG Yong-fang, et al. Research progress of anti-friction and anti-wear of piston-cylinder liner system in internal combustion engine[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 21-34.(in Chinese)
[15] HATAMI M, HASANPOUR M, JING Deng-wei. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part Ⅱ: nano-lubricants[J]. Journal of Molecular Liquids, 2020, 319: 114156.
[16] GROPPER D, WANG Ling, HARVEY T J. Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings[J]. Tribology International, 2016, 94: 509-529.
[17] RYK G, ETSION I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 2006, 261(7/8): 792-796.
[18] MARCHETTO D, ROTA A, CALABRI L, et al. AFM investigation of tribological properties of nano-patterned silicon surface[J]. Wear, 2008, 265(5/6): 577-582.
[19] PETTERSSON U, JACOBSON S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding[J]. Tribology Letters, 2004, 17(3): 553-559.
[20] LI Ning, XU Er-jiang, LIU Ze, et al. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces[J]. Scientific Reports, 2016, 6(1): 39388.
[21] CHEN Luan-xia, LIU Zhan-qiang, SHEN Qi. Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys[J]. Tribology International, 2018, 122: 84-95.
[22] WALKER J C, KAMPS T J, LAM J W, et al. Tribological behaviour of an electrochemical jet machined textured Al-Si automotive cylinder liner material[J]. Wear, 2017, 376/377: 1611-1621.
[23] GRECO A, RAPHAELSON S, EHMANN K, et al. Surface texturing of tribological interfaces using the vibromechanical texturing method[J]. Journal of Manufacturing Science and Engineering, 2009, 131(6): 061005
[24] SINGH A, HARIMKAR S P. Laser surface engineering of magnesium alloys: a review[J]. Journal of the Minerals, Metals and Materials Society, 2012, 64(6): 716-733.
[25] BAHARIN A F S, GHAZALI M J, WAHAB J A, et al. Laser surface texturing and its contribution to friction and wear reduction: a brief review[J]. Industrial Lubrication and Tribology, 2016, 68(1): 57-66.
[26] MAO Bo, SIDDAIAH A, LIAO Yi-liang, et al. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: a review[J]. Journal of Manufacturing Processes, 2020, 53: 153-173.
[27] KLINK U,蔡 杰.气缸工作表面的激光珩磨[J].国外内燃机,1998,30(2):50-52.KLINK U, CAI Jie. Laser honing of cylinder working surface[J]. Foreign Internal Combustion Engine, 1998, 30(2): 50-52.(in Chinese)
[28] SYED B, SHARIFF S M, PADMANABHAM G, et al. Influence of laser surface hardened layer on mechanical properties of re-engineered low carbon steel sheet[J]. Materials Science and Engineering: A, 2017, 685: 168-177.
[29] MAO Bo, LIAO Yi-liang, LI Bin. Gradient twinning microstructure generated by laser shock peening in an AZ31B magnesium alloy[J]. Applied Surface Science, 2018, 457: 342-351.
[30] MONTROSS C S, WEI Tao, YE Lin, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review [J]. International Journal of Fatigue, 2002, 24(10): 1021-1036.
[31] KATTOURA M, MANNAVA S R, QIAN Dong, et al. Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. International Journal of Fatigue, 2017, 102: 121-134.
[32] LI Kang-mei, YAO Zhen-qiang, HU Yong-xiang, et al. Friction and wear performance of laser peen textured surface under starved lubrication[J]. Tribology International, 2014, 77: 97-105.
[33] YAKIMETS I, RICHARD C, BÉRANGER G, et al. Laser peening processing effect on mechanical and tribological properties of rolling steel 100Cr6[J]. Wear, 2004, 256(3/4): 311-320.
[34] LIM H, KIM P, JEONG H, et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 2012, 212(6): 1347-1354.
[35] WANG Hao, NING Cheng-yi, HUANG Yi-hui, et al. Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening[J]. Opticsand Lasers in Engineering, 2017, 90(5): 179-185.
[36] MAO Bo, SIDDAIAH A, MENEZES P L, et al. Surface texturing by indirect laser shock surface patterning for manipulated friction coefficient[J]. Journal of Materials Processing Technology, 2018, 257: 227-233.
[37] SEDLAACˇGEK M, GREGORACˇGIACˇG P, PODGORNIK B. Use of the roughness parameters Ssk and Sku to control friction—a method for designing surface texturing[J]. Tribology Transactions, 2017, 60(2): 260-266.
[38] 胡 勇,屈盛官,李 彬,等.不同表面织构对柴油机缸套-活塞环摩擦磨损性能的影响[J].润滑与密封,2013,38(4):57-62.HU Yong, QU Sheng-guan, LI Bin, et al. Effects of different surface textures on friction and wear performance of diesel cylinder liner-piston ring[J]. Lubrication Engineering, 2013, 38(4): 57-62.(in Chinese)
[39] 饶 响,盛晨兴,郭智威.不同表面纹理结构对柴油机缸套-活塞环摩擦磨损性能的影响研究[J].兵工学报,2018,39(2):356-363.RAO Xiang, SHENG Chen-xing, GUO Zhi-wei. Research on the friction and wear properties of diesel engine cylinder liner with different surface textures[J]. Acta Armamentarii, 2018, 39(2): 356-363.(in Chinese)
[40] CHARITOPOULOS A G, EFSTATHIOU E E, PAPADOPOULOS C I, et al. Effects of manufacturing errors on tribological characteristics of 3-D textured micro-thrust bearings[J]. CIRP Journal of Manufacturing Science and Technology, 2013, 6(2): 128-142.
[41] COSTA H L, HUTCHINGS I M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions[J]. Tribology International, 2007, 40(8): 1227-1238.
[42] 阮鸿雁,吕建军,司 辉,等.不同织构表面的动压润滑性能研究[J].中国机械工程,2009,20(9):1033-1036.RUAN Hong-yan, LYU Jian-jun, SI Hui, et al. Research on hydrodynamic lubrication of different surface texture[J]. China Mechanical Engineering, 2009, 20(9): 1033-1036.(in Chinese)
[43] HUA Xi-jun, SUN Jian-guo, ZHANG Pei-yun, et al. Research on discriminating partition laser surface micro-texturing technology of engine cylinder[J]. Tribology International, 2016, 98: 190-196.
[44] 江仁埔,郭智威,饶 响,等.表面织构对缸套-活塞环摩擦学性能的影响[J].内燃机学报,2018,36(5):471-479.JIANG Ren-pu, GUO Zhi-wei, RAO Xiang, et al.Influences of thread grooves surface texturing on the tribological properties of cylinder liner-piston ring[J]. Transactions of CSICE, 2018, 36(5): 471-479.(in Chinese)
[45] XU Yu-fu, PENG Yu-bin, DEARN K D, et al. Fabrication and tribological characterization of laser textured boron cast iron surfaces[J]. Surface and Coatings Technology, 2017, 313: 391-401.
[46] 刘 郡,张执南,谢友柏.低黏度润滑油与织构对活塞环-缸套摩擦特性的影响[J].上海交通大学学报,2018,52(5):505-510.LIU Jun, ZHANG Zhi-nan, XIE You-bai. Effect of low viscosity oil and surface texture on friction characteristics of piston ring-liner[J]. Journal of Shanghai Jiao Tong University, 2018, 52(5): 505-510.(in Chinese)
[47] ZHANG Hui, HUA Meng, DONG Guo-zhong, et al. Optimization of texture shape based on genetic algorithm under unidirectional sliding[J]. Tribology International, 2017, 115: 222-232.
[48] 麻 凯,郭智威,缪晨炜,等.活塞环表面织构对缸套-活塞环摩擦学性能的影响[J].机械科学与技术,2019,38(7):1109-1117.MA Kai, GUO Zhi-wei, MIAO Chen-wei, et al. Influence of surface textured piston ring on tribological performance of cylinder liner-piston ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(7): 1109-1117.(in Chinese)
[49] SHEN Cong, KHONSARI M M. The effect of laser machined pockets on the lubrication of piston ring prototypes[J]. Tribology International, 2016, 101: 273-283.
[50] YU Hai-wu, WANG Xiao-lei, ZHOU Fei. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces[J]. Tribology Letters, 2010, 37(2): 123-130.
[51] EZHILMARAN V, VASA N J, VIJAYARAGHAVAN L. Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction[J]. Surface and Coatings Technology, 2018, 335: 314-326.
[52] USMAN A, PARK C W. Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: warm operating conditions[J]. Tribology International, 2016, 99: 224-236.
[53] RAO Xiang, SHENG Chen-xing, GUO Zhi-wei, et al. Effects of thread groove width in cylinder liner surface on performances of diesel engine[J]. Wear, 2019, 426/427: 1296-1303.
[54] ZHOU Yuan-kai, ZHU Hua, TANG Wei, et al. Development of the theoretical model for the optimal design of surface texturing on cylinder liner[J]. Tribology International, 2012, 52: 1-6.
[55] RYK G, ETSION I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 2006, 261(7/8): 792-796.
[56] ETSION I, SHER E. Improving fuel efficiency with laser surface textured piston rings[J]. Tribology International, 2009, 42(4): 542-547.
[57] 严东升.活塞环表面织构的摩擦学性能基础研究[D].南京:南京航空航天大学,2009.YAN Dong-sheng. Fundamental research on tribological performance of textured piston ring[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.(in Chinese)
[58] 许长坤,郭智威,缪晨炜,等.活塞环表面织构密度对缸套-活塞环摩擦性能的影响[J].机械科学与技术,2020,39(10):1489-1496.XU Chang-kun, GUO Zhi-wei, MIAO Chen-wei, et al. Effect of texture density in surface of piston ring on tribological performance of cylinder liner-piston ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1489-1496.(in Chinese)
[59] ZHAN Jian, YANG Ming-jiang. Investigation on dimples distribution angle in laser texturing of cylinder-piston ring system[J]. Tribology Transactions, 2012, 55(5): 693-697.
[60] DAVIS D, SRIVASTAVA M, MALATHI M, et al. Effect of Cr2AlC MAX phase addition on strengthening of Ni-Mo-Al alloy coating on piston ring: tribological and twist-fatigue life assessment[J]. Applied Surface Science, 2018, 449: 295-303.
[61] UOZATO S, NAKATA K, USHIO M. Evaluation of ferrous powder thermal spray coatings on diesel engine cylinder bores[J]. Surface and Coatings Technology, 2005, 200(7): 2580-2586.
[62] GERALD O J, LI Wen-ge, ZHAO Yuan-tao, et al. Influence of plasma spraying current on the microstructural characteristics and tribological behaviour of plasma sprayed Cr2O3 coating[J]. Boletín de la Sociedad Espaola de Cerámicay Vidrio, 2021, 60(6): 338-346.
[63] 曹玉霞,杜令忠,张伟刚,等.等离子喷涂NiCoCrAlY/Al2O3涂层的制备及摩擦性能研究[J].表面技术,2015,44(5):62-66.CAO Yu-xia, DU Ling-zhong, ZHANG Wei-gang, et al. Study on preparation and tribological properties of atmospheric plasma-sprayed NiCoCrAlY/Al2O3 wear-resistant coatings[J]. Surface technology, 2015, 44(5): 62-66.(in Chinese)
[64] 刘黎明.气缸内壁耐磨涂层的制备及其摩擦学性能研究[D].扬州:扬州大学,2018.LIU Li-ming. Preparation of cylinder inner wall wear-resistant coating and study on its tribological performance[D]. Yangzhou: Yangzhou University, 2018.(in Chinese)
[65] MANZAT A,KILLINGER A,GADOW R,等.超音速火焰喷涂气缸内壁涂层及其固有孔隙的益处[J].热喷涂技术,2012,4(2):57-64.MANZAT A, KILLINGER A, GADOW R, et al. Supersonic flame sprayed cylinder liner coatings and the benefits of their intrinsic porosity[J]. Thermal Spray Technology, 2012, 4(2): 57-64.(in Chinese)
[66] KARAOGLANLI A C, ALTUNCU E, OZDEMIR I, et al. Structure and durability evaluation of YSZ+Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions[J]. Surface and Coatings Technology, 2011, 205: 369-373.
[67] 徐 国,郑卫刚.超音速火焰喷涂在活塞环表面改性中的应用探究[J].热加工工艺,2014,43(14):167-168.XU Guo, ZHENG Wei-gang. Research on application of HVOF in surface modification of piston ring[J]. Hot Working Technology, 2014, 43(14): 167-168.(in Chinese)
[68] 黄 博,吴庆丹,魏新龙,等.超音速火焰喷涂WC-10Co-4Cr涂层的摩擦腐蚀性能研究[J].表面技术,2020,49(1):285-293.HUANG Bo, WU Qing-dan, WEI Xin-long, et al. Tribocorrosion behaviors of high velocity oxygen-fuel sprayed WC-10Co-4Cr coatings[J]. Surface Technology, 2020, 49(1): 285-293.(in Chinese)
[69] YANG Wen-jin, ZOU Lang, CAO Xiao-ying, et al. Fretting wear properties of HVOF-sprayed CoMoCrSi coatings with different spraying parameters[J]. Surface and Coatings Technology, 2019, 358: 994-1005.
[70] QIAO Lei, WU Yu-ping, HONG Sheng, et al. Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J]. Ultrasonics Sonochemistry, 2019, 52: 142-149.
[71] NIRANATLUMPONG P, KOIPRASERT H. The effect of Mo content in plasma-sprayed Mo-NiCrBSi coating on the tribological behavior[J]. Surface and Coatings Technology, 2010, 205(2): 483-489.
[72] SKOPP A, KELLING N, WOYDT M, et al. Thermally sprayed titanium suboxide coatings for piston ring/cylinder liners under mixed lubrication and dry-running conditions[J]. Wear, 2007, 262(9/10): 1061-1070.
[73] 何哲宇.活塞环用Mo及Mo基复合涂层的摩擦磨损性能研究[D].湘潭:湖南科技大学,2016.HE Zhe-yu. Friction and wear properties of Mo and Mo based composition coating for piston rings[D]. Xiangtan: Hunan University of Science and Technology, 2016.(in Chinese)
[74] 郭永明,李绪强,王海军,等.超音速等离子喷涂NiCr-Cr3C2/Mo复合涂层的高温摩擦磨损性能[J].中国表面工程,2012,25(5):31-36.GUO Yong-ming, LI Xu-qiang, WANG Hai-jun, et al.Tribological behavior of supersonic plasma spraying NiCr-Cr3C2/Mo composited coatings at high temperature[J]. China Surface Engineering, 2012, 25(5): 31-36.(in Chinese)
[75] RASTEGAR F, RICHARDSON D E. Alternative to chrome: HVOF cermet coatings for high horse power diesel engines[J]. Surface and Coatings Technology, 1997, 90(1/2): 156-163.
[76] LARIBI M, VANNES A B, TREHEUX D. Study of mechanical behavior of molybdenum coating using sliding wear and impact tests[J]. Wear, 2007, 262(11/12): 1330-1336.
[77] CHO D H, LEE Y Z. Evaluation of ring surfaces with several coatings for friction, wear and scuffing life[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 992-996.
[78] ARAUJO J A, BANFIELD R R. DLC as alow friction coating for engine components[J]. SAE Technical Papers, 2012-36-0255.
[79] 王 星,程伟胜.类金刚石涂层在活塞环上的应用[J].汽车与新动力,2019,2(3):60-63.WANG Xing, CHENG Wei-sheng. Application of diamond-like carbon coating on piston ring[J].Automobile and New Powertrain, 2019, 2(3): 60-63.(in Chinese)
[80] KOSZELA W, PAWLUS P, REIZER R, et al. The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines[J]. Tribology International, 2018, 127: 470-477.
[81] TAS M O, BANERJI A, LOU M, et al. Roles of mirror-like surface finish and DLC coated piston rings on increasing scuffing resistance of cast iron cylinder liners[J]. Wear, 2017, 376/377: 1558-1569.
[82] DAHOTRE N B, NAYAK S. Nanocoatings for engine application[J]. Surface and Coatings Technology, 2005, 194(1): 58-67.
[83] RAGHAVENDRA C R, BASAVARAJAPPA S, SOGALAD I. Multi-objective optimization of electrodeposition of Ni-Al2O3 nano composite coating on Al6061 substrate[J]. Transactions of the Indian Institute of Metals, 2018, 71(9): 2110-2132.
[84] UMAPATHI D, DEVARAJU A, RATHINASURIYAN C, et al. Mechanical and tribological properties of electroless nickel phosphorous and nickel phosphorous-titanium nitride coating[J]. Materials Today Proceedings, 2020, 22: 1038-1042.
[85] DOLATABADI N, FORDER M, MORRIS N, et al. Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction[J]. Applied Energy, 2020, 259(1): 114129.
[86] ZHANG Yu-juan, ZHANG Sheng-mo, SUN D, et al. Wide adaptability of Cu nano-additives to the hardness and composition of DLC coatings in DLC/PAO solid-liquid composite lubricating system[J]. Tribology International, 2019, 138: 184-195.
[87] GÓRAL A, LITYAN'GSKA-DOBRZYAN'GSKA L, KOT M, et al. Effect of surface roughness and structure features on tribological properties of electrodeposited nanocrystalline Ni and Ni/Al2O3 coatings[J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2118-2128.
[88] RAGHAVENDRA C R, BASAVARAJAPPA S, SOGALAD I, et al. Study on Ni composite coating on Al6061 substrate material with different nano particle reinforcement by electrodeposition process[J]. Materials Today: Proceedings, 2020, 24(2): 1680-1685.
[89] BAJWA R S, KHAN Z, BAKOLAS V, et al. Water-lubricated Ni-based composite(Ni-Al2O3, Ni-SiC and Ni-ZrO2)thin film coatings for industrial applications[J]. Acta Metallurgica Sinica(English Letters), 2016, 29(1): 8-16.
[90] VAßEN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2010, 205(4): 938-942.
[91] CERIT M. Thermo mechanical analysis of a partially ceramic coated piston used in an SI engine[J]. Surface and Coatings Technology, 2011, 205(11): 3499-3505.
[92] YAO Zhi-min, QIAN Zuo-qin. Thermal analysis of nano ceramic coated piston used in natural gas engine[J]. Journal of Alloys and Compounds, 2018, 768: 441-450.
[93] DE GOES U W, MARKOCSAN N, GUPTA M, et al. Thermal barrier coatings with novel architectures for diesel engine applications[J]. Surface and Coatings Technology, 2020, 396: 125950.
[94] 王睿哲,朱丽娜,岳 文,等.激光表面织构化与固体润滑技术复合处理改善表面摩擦学性能的研究现状[J].材料保护,2019,52(10):110-115.WANG Rui-zhe, ZHU Li-na, YUE Wen, et al, Research status of compound treatment of laser surface texturing and solid lubrication technology to improve surface tribological properties[J]. Materials Protection, 2019, 52(10): 110-115.(in Chinese)
[95] CHO M R, CHOI J K, HAN D C. Calculation of mixed lubrication at piston ring and cylinder liner interface[J]. KSME International Journal, 2001, 15(7): 859-865.
[96] PATIR N, CHENG H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1978, 100(1): 12-17.
[97] PATIR N, CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 121(2): 220-230.
[98] GREENWOOD J A, TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633.
[99] WILLIS E. Surface finish in relation to cylinder liners[J]. Wear, 1986, 109(1/2/3/4): 351-366.
[100] RONEN A, ETSION I, KLIGERMAN Y. Friction-reducing surface-texturing in reciprocating automotive components[J]. Tribology Transactions, 2001, 44(3): 359-366.
[101] RYK G, KLIGERMAN Y, ETSION I. Experimental investigation of laser surface texturing for reciprocating automotive components[J].Tribology Transactions, 2002, 45(4): 444-449.
[102] KLIGERMAN Y, ETSION I, SHINKARENKO A. Improving tribological performance of piston rings by partial surface texturing[J]. Journal of Tribology, 2005, 127(3): 632-638.
[103] 符永宏,张华伟,纪敬虎,等.微造型活塞环表面的润滑性能数值分析[J].内燃机学报,2009,27(2):180-185.FU Yong-hong, ZHANG Hua-wei, JI Jing-hu, et al. Numerical analysis on the lubrication performance of piston ring by surface micro-texturing[J]. Transactions of CSICE Engine, 2009, 27(2): 180-185.(in Chinese)
[104] LIU Cheng, LYU Yan-jun, ZHANG Yong-fang, et al. Investigation on the frictional performance of surface textured ring-deformed liner conjunction in internal combustion engines[J]. Energies, 2019, 12(14): 2761.
[105] 胡天昌.金属表面激光织构化设计及其摩擦学性能研究[D].北京:中国科学院大学,2012.HU Tian-chang. Study on fabrication and tribological properties of laser texturing on the metal surfaces[D]. Beijing: University of Chinese Academy of Sciences, 2012.(in Chinese)
[106] ZHANG Ke-dong, DENG Jian-xin, GUO Xu-hong, et al. Study on the adhesion and tribological behavior of PVD TiAlN coatings with a multi-scale textured substrate surface[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 292-305.
[107] 万 轶,李建亮,熊党生.活塞环表面织构化镀层的摩擦性能研究[J].表面技术,2018,47(6):195-201.WAN Yi, LI Jian-liang, XIONG Dang-sheng. Tribological property of textured-coating on piston ring surface[J]. Surface Technology, 2018, 47(6): 195-201.(in Chinese)
[108] LI Jian-liang, XIONG Dang-sheng, WU Hong-yan, et al. Tribological properties of laser surface texturing and molybdenizing duplex-treated Ni-base alloy[J]. Tribology Transactions, 2010, 53(2): 195-202.
[109] TAN Xu-guang, ZHANG Jian, XIONG Pei-you. Wear resistance mechanism of engine piston skirt coating under cold start condition [J]. Engineering Failure Analysis, 2020, 118: 104912.
[110] MA Chun-sheng, LIU Jian, ZHU Xin-he, et al. Optimization of surface texture fabricated by three-step microarc oxidation for self-lubricating composite coating of diesel engine piston skirts [J]. Wear, 2021, 466/467: 203557.
[111] KOSZELA W, PAWLUS P, REIZER R, et al. The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines[J]. Tribology International, 2018, 127: 470-477.