|Table of Contents|

Research progress of detection, monitoring and running safety of bridge-track system for high-speed railway(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2022年01期
Page:
1-23
Research Field:
综述
Publishing date:

Info

Title:
Research progress of detection, monitoring and running safety of bridge-track system for high-speed railway
Author(s):
GOU Hong-ye12 LIU Chang1 BAN Xin-lin3 MENG Xin3 PU Qian-hui1
(1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. Key Laboratory of High-Speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 3. China Academy of Railway Sciences Co., Ltd., Beijing 100081, China)
Keywords:
bridge engineering bridge-track structure system of high-speed railway detection and monitoring deformation mapping relationship service performance running safety
PACS:
U24
DOI:
10.19818/j.cnki.1671-1637.2022.01.001
Abstract:
To promote the safety performance of bridge-track structure and ensure the structural adaptability and running safety of high-speed railway under complex environmental conditions, the improvement and optimization of detection and monitoring equipment of bridge-track system for high-speed railway were introduced, the dynamic evolution rule of bridge-track structure service performance was analyzed, the evaluation and prediction methods of the running safety of high-speed train under complex conditions were summarized, and the future research priorities and directions were prospected. Research results show that in the detection and monitoring technology research of bridge-track system, existing research focuses on the optimization of traditional detection and monitoring equipment and the deep integration of intelligent technology and damage identification method. The core objective is to improve the efficiency, accuracy and standardization of detection and monitoring of bridge-track structure, and realize the accurate evaluation of infrastructure service status. In the research of bridge-track spatial deformation mapping relationship, considering infrastructure interaction deformation mapping model can accurately describe the change trend, development and spectral characteristics of the track geometry caused by the evolution of the interface state between the structural layers, but lack of in-depth study of high-speed railway bridge-track collaborative design and deformation intelligent control device. The study of structural service performance evolution is mostly based on the idealized elastoplastic constitutive model, and the study of service performance degradation behavior is limited to specific service environment. The research on the traffic safety of high-speed railway bridges under long-term service conditions based on train-track-bridge dynamic interaction theory is being carried out step by step, and the traffic safety evaluation criteria based on different index systems are proposed. Making full use of the monitoring data of bridge-track system, strengthening the research on the performance evolution mechanism and damage failure mechanism of bridge-track structure in complex environment, and proposing new intelligent evaluation and prediction methods for the running safety of high-speed train with high portability under the condition of updated information are the research directions of future focus. 1 tab, 8 figs, 171 refs.

References:

[1] 勾红叶.高速铁路桥梁-轨道变形映射与行车安全[M].北京:科学出版社,2020.GOU Hong-ye. Bridge-Track Deformation Mapping and Traffic Safety of High-Speed Railway[M]. Beijing: Science Press, 2020.(in Chinese)
[2] 翟婉明,赵春发,夏 禾,等.高速铁路基础结构动态性能演变及服役安全的基础科学问题[J].中国科学:技术科学,2014,44(7):645-660.ZHAI Wan-ming, ZHAO Chun-fa, XIA He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Scientia Sinica(Technologica), 2014, 44(7): 645-660.(in Chinese)
[3] 翟婉明,赵春发.现代轨道交通工程科技前沿与挑战[J].西南交通大学学报,2016,51(2):209-226.ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226.(in Chinese)
[4] 蒋丽忠,周旺保,魏 标,等.地震作用下高速铁路车-轨-桥系统安全研究进展[J].土木工程学报,2020,53(9):1-13.JIANG Li-zhong, ZHOU Wang-bao, WEI Biao, et al. Research progress of train-track-bridge system safety of high-speed railway under earthquake action[J]. China Civil Engineering Journal, 2020, 53(9): 1-13.(in Chinese)
[5] 李永乐,向活跃,强士中.风-列车-桥系统耦合振动研究综述[J].中国公路学报,2018,31(7):24-37.LI Yong-le, XIANG Huo-yue, QIANG Shi-zhong. Review on coupling vibration of wind-vehicle-bridge systems[J]. China Journal of Highway and Transport, 2018, 31(7): 24-37.(in Chinese)
[6] 李小珍,辛莉峰,王 铭,等.车-桥耦合振动2019年度研究进展[J].土木与环境工程学报,2020,42(5):126-138.LI Xiao-zhen, XIN Li-feng, WANG Ming, et al. State-of-the-art review of vehicle-bridge interactions in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 126-138.(in Chinese)
[7] 钟继卫,王 波,王 翔,等.桥梁智能检测技术研究与应用[J].桥梁建设,2019,49(S1):1-6.ZHONG Ji-wei, WANG Bo, WANG Xiang, et al. Research of bridge intelligent inspection technology and application[J]. Bridge Construction, 2019, 49(S1): 1-6.(in Chinese)
[8] 战家旺,闫宇智,强伟亮,等.一种基于频响函数相似性的铁路桥墩损伤识别方法[J].中国铁道科学,2018,39(2):37-43.ZHAN Jia-wang, YAN Yu-zhi, QIANG Wei-liang, et al. Damage identification method for railway pier based on frequency response function similarity[J]. China Railway Science, 2018, 39(2): 37-43.(in Chinese)
[9] 闫宇智,战家旺,张 楠,等.基于车激响应的桥梁支座脱空病害识别方法研究[J].桥梁建设,2020,50(2):19-24.YAN Yu-zhi, ZHAN Jia-wang, ZHANG Nan, et al. Study of methods to identify bridge bearing disengagement based on vehicle-excited responses[J]. Bridge Construction, 2020, 50(2): 19-24.(in Chinese)
[10] 姜会增.基于数字图像处理的铁路桥梁裂缝检测技术[J].铁道建筑,2016,56(5):82-86.JIANG Hui-zeng.Railway bridge crack detection technology based on digital image processing[J]. Railway Engineering, 2016, 56(5): 82-86.(in Chinese)
[11] 杨杰文,章 光,陈西江,等.基于深度学习的较复杂背景下桥梁裂缝检测[J].铁道科学与工程学报,2020,17(11):2722-2728.YANG Jie-wen, ZHANG Guang, CHEN Xi-jiang, et al. Research on bridge crack detection based on deep learning under complex background[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2722-2728.(in Chinese)
[12] 李良福,马卫飞,李 丽,等.基于深度学习的桥梁裂缝检测算法研究[J].自动化学报,2019,45(9):1727-1742.LI Liang-fu, MA Wei-fei, LI Li, et al. Research on detection algorithm for bridge cracks based on deep learning[J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742.(in Chinese)
[13] 张晶晶,聂洪玉,喻 强.基于多尺度输入图像渗透模型的桥梁裂缝检测[J].计算机工程,2017,43(2):273-279.ZHANG Jing-jing, NIE Hong-yu, YU Qiang. Bridge crack detection based on percolation model with multi-scale input image[J]. Computer Engineering, 2017, 43(2): 273-279.(in Chinese)
[14] 赵欣欣,钱胜胜,刘晓光.基于卷积神经网络的铁路桥梁高强螺栓缺失图像识别方法[J].中国铁道科学,2018,39(4):56-62.ZHAO Xin-xin, QIAN Sheng-sheng, LIU Xiao-guang. Image identification method for high-strength bolt missing on railway bridge based on convolution neural network[J]. China Railway Science, 2018, 39(4): 56-62.(in Chinese)
[15] 刘小阳,孙广通,李 峰,等.基于地基雷达的高铁简支箱梁运营性能检定[J].中国铁道科学,2020,41(1):50-56.LIU Xiao-yang, SUN Guang-tong, LI feng, et al. Verification of operational performance for simply supported box girder in high speed railway based on GB-SAR [J]. China Railway Science, 2020, 41(1): 50-56.(in Chinese)
[16] 王 翔,汪正兴.高速铁路桥梁雷达非接触测试技术研究[J].铁道工程学报,2020,37(1):50-54,84.WANG Xiang, WANG Zheng-xing. Research on the radar non-contact testing technology of high-speed railway bridges[J]. Journal of Railway Engineering Society, 2020, 37(1): 50-54, 84.(in Chinese)
[17] 史 康,何旭辉,邹云峰,等.大跨度高速铁路桥梁健康监测系统研发[J].铁道科学与工程学报,2015,12(4):737-742.SHI Kang, HE Xu-hui, ZOU Yun-feng, et al. Research and development of health monitoring system for long-span bridges of high-speed railways[J]. Journal of Railway Science and Engineering, 2015, 12(4): 737-742.(in Chinese)
[18] 赵维刚,王新敏,杜彦良,等.常用跨度铁路桥梁运行状态分布式监测与预警技术[J].上海交通大学学报,2015,49(7):1046-1051.ZHAO Wei-gang, WANG Xin-min, DU Yan-liang, et al. Distributed running state monitoring and pre-warning of common span railway bridges[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 1046-1051.(in Chinese)
[19] 顾津申.石济客专济南黄河桥健康监测系统总体设计[J].铁道工程学报,2019,36(4):54-59.GU Jin-shen. General design of health monitoring system for the Yellow River Bridge of Shijiazhuang-Jinan passenger dedicated line[J]. Journal of Railway Engineering Society, 2019, 36(4): 54-59.(in Chinese)
[20] 杨怀志.高速铁路大型桥梁养护维修PHM系统应用初探[J].铁道建筑,2017,57(6):12-16,35.YANG Huai-zhi. Elementary discussion on application of PHM system for maintenance and repair in large bridges of high speed railway[J]. Railway Engineering, 2017, 57(6): 12-16, 35.(in Chinese)
[21] LIU Ye, VOIGT T, WIRSTRÖM N, et al. ECOVIBE: on-demand sensing for railway bridge structural health monitoring[J]. IEEE Internet of Things Journal, 2019, 6(1): 1068-1078.
[22] 赵有明.高速铁路基础设施服役状态检测技术[J].铁道建筑,2015,55(10):1-6.ZHAO You-ming. Detection technology of service state of high speed railway infrastructure[J]. Railway Engineering, 2015, 55(10): 1-6.(in Chinese)
[23] 王 翔,王 波,汪正兴.高速铁路运营期基础沉降长期监测技术研究[J].铁道工程学报,2017,34(5):11-14,64.WANG Xiang, WANG Bo, WANG Zheng-xing. Research on the long-term monitoring technology of subgrade settlement for high-speed railway in operation period[J]. Journal of Railway Engineering Society, 2017, 34(5): 11-14, 64.(in Chinese)
[24] 禚 一,王 旭,张 军.高速铁路沉降自动化监测系统SMAIS的研发及应用[J].铁道工程学报,2015,32(4):10-15.ZHUO Yi, WANG Xu, ZHANG Jun. Development and application of automatic monitoring system SMAIS for settlement of high-speed railway[J]. Journal of Railway Engineering Society, 2015, 32(4): 10-15.(in Chinese)
[25] 王少杰,徐赵东,李 舒,等.基于钢轨应变监测的多跨铁路简支梁桥桥墩差异沉降识别[J].铁道学报,2016,38(3):106-110.WANG Shao-jie, XU Zhao-dong, LI Shu, et al. Identification of differential settlement of piers for multi-span railway simply supported girder bridges based on track strain monitoring[J]. Journal of the China Railway Society, 2016, 38(3): 106-110.(in Chinese)
[26] 姚 冬,陈东生,陶 凯,等.高速铁路基础设施综合检测监测技术探讨[J].铁道标准设计,2020,64(3):42-48.YAO Dong, CHEN Dong-sheng, TAO Kai, et al. Discussions on comprehensive inspection and monitoring technologies for railway infrastructures[J]. Railway Standard Design, 2020, 64(3): 42-48.(in Chinese)
[27] 门 平,董世运,卢 超,等.钢轨踏面低频超声表面波传播模式研究[J].仪器仪表学报,2018,39(3):13-20.MEN Ping, DONG Shi-yun, LU Chao, et al. Research on low-frequency acoustic surface wave propagation mode in rail treads[J]. Chinese Journal of Scientific Instrument, 2018, 39(3): 13-20.(in Chinese)
[28] 贾中青,张振振,姬光荣.激光诱导击穿光谱和激光超声技术在钢轨检测中的应用[J].中国海洋大学学报(自然科学版),2019,49(8):142-146.JIA Zhong-qing, ZHANG Zhen-zhen, JI Guang-rong. Application on the rail detection using laser-induced breakdown spectroscopy and laser ultrasonic technology[J]. Periodical of Ocean University of China, 2019, 49(8): 142-146.(in Chinese)
[29] 南钢洋,王启武,张振振,等.基于激光超声方法的钢轨缺陷检测[J].红外与激光工程,2017,46(1):140-145.NAN Gang-yang, WANG Qi-wu, ZHANG Zhen-zhen, et al. Rail steel flaw inspection based on laser ultrasonic method[J]. Infrared and Laser Engineering, 2017, 46(1): 140-145.(in Chinese)
[30] LIU Ze, LI Wen, XUE Fang-qi, et al. Electromagnetic tomography rail defect inspection[J]. IEEE Transactions on Magnetics, 2015, 51(10): 1-7.
[31] 夏 银,林建辉,王 锋,等.基于2D激光位移传感器的轨底坡动态检测系统研究[J].铁道标准设计,2019,63(4):63-68.XIA Yin, LIN Jian-hui, WANG Feng, et al. Study on dynamic detection system of rail cant based on 2D laser displacement sensor[J]. Railway Standard Design, 2019, 63(4): 63-68.(in Chinese)
[32] 孙明健,程星振,王 艳,等.基于光声信号的高铁钢轨表面缺陷检测方法[J].物理学报,2016,65(3):351-360.SUN Ming-jian, CHENG Xing-zhen, WANG Yan, et al. Method for detecting high-speed rail surface defects by photoacoustic signal[J]. Acta Physica Sinica, 2016, 65(3): 351-360.(in Chinese)
[33] 张 辉,宋雅男,王耀南,等.钢轨缺陷无损检测与评估技术综述[J].仪器仪表学报,2019,40(2):11-25.ZHANG Hui, SONG Ya-nan, WANG Yao-nan, et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 11-25.(in Chinese)
[34] 戴 鹏,王胜春,杜馨瑜,等.基于半监督深度学习的无砟轨道扣件缺陷图像识别方法[J].中国铁道科学,2018,39(4):43-49.DAI Peng, WANG Sheng-chun, DU Xin-yu, et al. Image recognition method for the fastener defect of ballastless track based on semi-supervised deep learning[J]. China Railway Science, 2018, 39(4): 43-49.(in Chinese)
[35] 姚宗伟,杨宏飞,胡际勇,等.基于机器视觉和卷积神经网络的轨道表面缺陷检测方法[J].铁道学报,2021,43(4):101-107.YAO Zong-wei, YANG Hong-fei, HU Ji-yong, et al. Track surface defect detection method based on machine vision and convolutional neural network[J]. Journal of the China Railway Society, 2021, 43(4): 101-107.(in Chinese)
[36] 孙次锁,刘 军,秦 勇,等.基于深度学习的钢轨伤损智能识别方法[J].中国铁道科学,2018,39(5):51-57.SUN Ci-suo, LIU Jun, QIN Yong, et al. Intelligent detection method for rail flaw based on deep learnin[J]. China Railway Science, 2018, 39(5): 51-57.(in Chinese)
[37] 闵永智,岳 彪,马宏锋,等.基于图像灰度梯度特征的钢轨表面缺陷检测[J].仪器仪表学报,2018,39(4):220-229.MIN Yong-zhi, YUE Biao, MA Hong-feng, et al. Rail surface defects detection based on gray scale gradient characteristics of image[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 220-229.
[38] GAN Jin-rui, LI Qing-yong, WANG Jian-zhu, et al. A hierarchical extractor-based visual rail surface inspection system[J]. IEEE Sensors Journal, 2017, 17(23): 7935-7944.
[39] 胡松涛,石文泽,卢 超,等.高速铁路道岔尖轨轨底伤损SH导波原位检测方法研究[J].机械工程学报,2021,57(18):2-14.HU Song-tao, SHI Wen-ze, LU Chao, et al. Research on in-situ detection of damage in the high-speed railway turnout bottom based on shear horizontal guided wave[J]. Journal of Mechanical Engineering, 2021, 57(18): 2-14.(in Chinese)
[40] 许庆阳,刘中田,赵会兵.基于隐马尔科夫模型的道岔故障诊断方法[J].铁道学报,2018,40(8):98-106.XU Qing-yang, LIU Zhong-tian, ZHAO Hui-bing. Method of turnout fault diagnosis based on hidden Markov model[J]. Journal of The China Railway Society, 2018, 40(8): 98-106.(in Chinese)
[41] 田世润, 齐金平, 王保福, 等. 基于贝叶斯网络的复式交分道岔故障诊断[J]. 北京交通大学学报,2020,44(6):118-125.TIAN Shi-run, QI Jin-ping, WANG Bao-fu, et al. Fault diagnosis of double slip switches based on Bayesian network[J]. Journal of Beijing Jiaotong University, 2020, 44(6): 118-125.(in Chinese)
[42] 陈虹屹,王小敏,郭 进,等.基于EEMD奇异熵的高速道岔裂纹伤损检测[J].振动.测试与诊断,2016,36(5):845-851,1019.CHEN Hong-yi, WANG Xiao-min, GUO Jin, et al. High-speed turnout flaw detection based on EEMD singular entropy[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(5): 845-851, 1019.(in Chinese)
[43] 赵 洁.基于多传感器信息融合的轨道缺陷在线检测方法的研究[D].成都:西南交通大学,2015.ZHAO Jie. Online rail defect detection method based on multi-sensor information fusion[D]. Chengdu: Southwest Jiaotong University, 2015.(in Chinese)
[44] 战 友,阳恩慧,马啸天,等.无砟轨道板裂缝三维激光检测系统研发与算法验证[J].铁道学报,2021,43(7):114-120.ZHAN You, YANG En-hui, MA Xiao-tian, et al. Development and algorithm verification of 3D laser detection system for non-ballasted track slab cracks[J]. Journal of the China Railway Society, 2021, 43(7): 114-120.(in Chinese)
[45] 肖子葳,朱国甫,张 杰.CRTS Ⅱ型板式轨道CA砂浆层应力波法损伤识别[J].武汉理工大学学报,2021,43(6):34-40.XIAO Zi-wei, ZHU Guo-fu, ZHANG Jie, et al. Identification of CA mortar defects in CRTS Ⅱ ballastless tracks of high-speed railway using stress wave method[J]. Journal of Wuhan University of Technology, 2021, 43(6): 34-40.(in Chinese)
[46] 廖红建,朱庆女,昝月稳,等.基于探地雷达的高铁无砟轨道结构层病害检测[J].西南交通大学学报,2016,51(1):8-13.LIAO Hong-jian, ZHU Qing-nü, ZAN Yue-wen, et al. Detection of ballastless track diseases in high-speed railway based on ground penetrating radar[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 8-13.(in Chinese)
[47] 舒志乐,朱思宇,张华杰.无砟轨道CA砂浆层病害探地雷达检测及三维正演模拟[J].铁道科学与工程学报,2021,18(7):1679-1685.SHU Zhi-le, ZHU Si-yu, ZHANG Hua-jie. Ground penetrating radar detection and three-dimensional forward modeling of CA mortar layer disease on ballastless track[J]. Journal of Railway Science and Engineering, 2021, 18(7): 1679-1685.(in Chinese)
[48] 钟鹏飞,车爱兰,冯少孔,等.高速铁路线下结构典型病害分析及快速无损检测方法研究[J].振动与冲击,2017,36(11):154-160.ZHONG Peng-fei, CHE Ai-lan, FENG Shao-kong, et al. Typical defects' analysis and nondestructive detection method for undertrack structures of high speed railways[J]. Journal of Vibration and Shock, 2017, 36(11): 154-160.(in Chinese)
[49] ZHOU Lu, ZHANG Chao, NI Yi-qing, et al. Real-time condition assessment of railway tunnel deformation using an FBG-based monitoring system[J]. Smart Structures and Systems, 2018, 21(5): 537-548.
[50] 周 陆,孙祥涛,倪一清.高速列车轮轨检测和监测方法综述[J].电力机车与城轨车辆,2021,44(1):1-10.ZHOU Lu, SUN Xiang-tao, NI Yi-qing. Review of inspection and monitoring methods of high speed train wheels and rails[J]. Electric Locomotives and Mass Transit Vehicles, 2021, 44(1): 1-10.(in Chinese)
[51] 朱力强,许西宁,余祖俊,等.基于超声导波的钢轨完整性检测方法研究[J].仪器仪表学报,2016,37(7):1603-1609.ZHU Li-qiang, XU Xi-ning, YU Zu-jun, et al. Study on the railway integrity monitoring method based on ultrasonic guided waves[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1603-1609.(in Chinese)
[52] 蔡小培,田春香,王铁霖,等.长联大跨桥梁无缝线路力学特性与结构设计[J].高速铁路技术,2020,11(2):73-79,86.CAI Xiao-pei, TIAN Chun-xiang, WANG Tie-lin, et al. Mechanical characteristics and structural design of continuous welded rail on long-unit bridge with long span[J]. High Speed Railway Technology, 2020, 11(2): 73-79, 86.(in Chinese)
[53] WEI Jia-hong, LIU Chong, REN Tong-qun, et al. Online condition monitoring of a rail fastening system on high-speed railways based on wavelet packet analysis[J]. Sensors, 2017, 17(2): 318.
[54] WANG Jun-fang, LIU Xiao-zhou, NI Yi-qing. A Bayesian probabilistic approach for acoustic emission-based rail condition assessment[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(1): 21-34.
[55] 王金虎.基于双谱的重载铁路道岔钢轨折断及伤损监测系统[J].铁道建筑,2017,57(6):130-134,139.WANG Jin-hu. Monitoring system for rail fracture and damage of heavy haul railway turnout based on bispectrum[J]. Railway Engineering, 2017, 57(6): 130-134, 139.(in Chinese)
[56] 苗 壮,何越磊,路宏遥,等.基于机器视觉的无砟轨道层间结构位移测量方法研究[J].铁道标准设计,2020,64(4):77-83.MIAO Zhuang, HE Yue-lei, LU Hong-yao, et al. Research on measurement method of interlayer structure displacement in ballastless track based on machine vision[J]. Railway Standard Design, 2020, 64(4): 77-83.(in Chinese)
[57] 杨 飞,王秀丽,尤明熙,等.基于不平顺的CRTS Ⅱ型轨道板状态评价方法研究[J].铁道工程学报,2020,37(7):29-34.YANG Fei, WANG Xiu-li, YOU Ming-xi, et al. Research on the state evaluation method of CRTS Ⅱ track slab based on track irregularity[J]. Journal of Railway Engineering Society, 2020, 37(7): 29-34.(in Chinese)
[58] 傅勤毅,刘芝平,李焜武.基于GPS定位原理的轨道外部几何参数测量系统[J].科技导报,2014,32(31):41-45.FU Qin-yi, LIU Zhi-ping, LI Kun-wu. An external railway geometric parameter measurement system based on GPS[J]. Science and Technology Review, 2014, 32(31): 41-45.(in Chinese)
[59] 黎 奇,白征东,陈波波,等.GNSS/INS多传感器组合高速铁路轨道测量系统[J].测绘学报,2020,49(5):569-579.LI Qi, BAI Zheng-dong, CHEN Bo-bo, et al. A novel track measurement system based on GNSS/INS and multisensor for high-speed railway[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 569-579.(in Chinese)
[60] 黎国清,刘秀波,杨 飞,等.高速铁路简支梁徐变上拱引起的高低不平顺变化规律及其对行车动力性能的影响[J].中国科学:技术科学,2014,44(7):786-792.LI Guo-qing, LIU Xiu-bo, YANG Fei, et al. Variation law and impact on dynamic performance of profile irregularity caused by creep of simply-supported beam on high-speed railway[J]. Scientia Sinica(Technologica), 2014, 44(7): 786-792.(in Chinese)
[61] 陈兆玮.高速铁路桥墩沉降对行车性能影响的研究[D].成都:西南交通大学,2017.CHEN Zhao-wei. Influence of pier settlement on dynamic performance of running trains in high-speed railways[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[62] 陈兆玮,孙 宇,翟婉明.高速铁路桥墩沉降与钢轨变形的映射关系(Ⅰ):单元板式无砟轨道系统[J].中国科学:技术科学,2014,44(7):770-777.CHEN Zhao-wei, SUN Yu, ZHAI Wan-ming. Mapping relationship between pier settlement and rail deformation of high-speed railways—Part(Ⅰ): the unit slab track system[J]. Scientia Sinica(Technologica), 2014, 44(7): 770-777.(in Chinese)
[63] 陈兆玮,孙 宇,翟婉明.高速铁路桥墩沉降与钢轨变形的映射关系(Ⅱ):纵连板式无砟轨道系统[J].中国科学:技术科学,2014,44(7):778-785.CHEN Zhao-wei, SUN Yu, ZHAI Wan-ming. Mapping relationship between pier settlement and rail deformation of high-speed railways—Part(Ⅱ): the longitudinal connected ballastless track system[J]. Scientia Sinica(Technologica), 2014, 44(7): 778-785.(in Chinese)
[64] 勾红叶,冉智文,蒲黔辉,等.高速铁路桥梁竖向变形与轨面几何形态的通用映射解析模型研究[J].工程力学,2019,36(6):227-238.GOU Hong-ye, RAN Zhi-wen, PU Qian-hui, et al. Study on mapping relationship between bridge vertical deformation and track geometry of high-speed railway[J]. Engineering Mechanics, 2019, 36(6): 227-238.(in Chinese)
[65] 勾红叶,冉智文,蒲黔辉,等.桥梁竖向变形对轨道平顺性的影响研究[J].铁道工程学报,2018,35(11):42-47.GOU Hong-ye, RAN Zhi-wen, PU Qian-hui, et al.Research on the influence of vertical deformation of bridge on the track regularity[J]. Journal of Railway Engineering Society, 2018, 35(11): 42-47.(in Chinese)
[66] GOU Hong-ye, YANG Long-chen, LENG Dan, et al. Effect of bridge lateral deformation on track geometry of high-speed railway[J]. Steel and Composite Structures, 2018, 29(2): 219-229.
[67] GOU Hong-ye, XIE Rui, LIU Chang, et al. Analytical study on high-speed railway track deformation under long-term bridge deformations and interlayer degradation[J]. Structures, 2021, 29: 1005-1015.
[68] GOU Hong-ye, LIU Chang, XIE Rui, et al. Running safety of high-speed train on deformed railway bridges with interlayer connection failure[J]. Steel and Composite Structures, 2021, 39(3): 261-274.
[69] JIANG Li-zhong, ZHENG Lan, FENG Yu-lin, et al. Mapping the relationship between the structural deformation of a simply supported beam bridge and rail deformation in high-speed railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1081-1092.
[70] FENG Yu-lin, JIANG Li-zhong, ZHOU Wang-bao, et al. An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway[J]. Steel and Composite Structures, 2019, 33(2): 209-224.
[71] 蒋丽忠,冯玉林,周旺保,等.高铁连续梁桥横向变形与轨面几何形态变化的映射关系研究[J].建筑结构学报,2021,42(4):215-222.JIANG Li-zhong, FENG Yu-lin, ZHOU Wang-bao, et al. Mapping relationship between continuous girder bridge transverse deformation and rail geometric changes of high-speed railway[J]. Journal of Building Structures, 2021, 42(4): 215-222.(in Chinese)
[72] 何春燕,陈兆玮,翟婉明.高速铁路路桥过渡段不均匀沉降与钢轨变形的映射关系及动力学应用[J].中国科学:技术科学,2018,48(8):881-890.HE Chun-yan, CHEN Zhao-wei, ZHAI Wan-ming. Mapping relationship between uneven settlement of subgrade and rail deformation in subgrade-bridge transition section and its dynamic application[J]. Scientia Sinica(Technologica), 2018, 48(8): 881-890.(in Chinese)
[73] 吴 斌,林志华,曾志平,等.日温下高铁桥墩位移与钢轨变形的映射关系[J].铁道工程学报,2017,34(11):51-56,75.WU Bin, LIN Zhi-hua, ZENG Zhi-ping, et al. Mapping relationship between the bridge pier's displacement and rail deformation of high-speed railways under the influence of sunshine temperature[J]. Journal of Railway Engineering Society, 2017, 34(11): 51-56, 75.(in Chinese)
[74] YAU J D. Response of a train moving on multi-span railway bridges undergoing ground settlement[J]. Engineering Structures, 2009, 31(9): 2115-2122.
[75] YANG Song, XIAO Hong, HUANG Lu-wei. Effects on mechanical properties of track structure and running safety caused by uneven settlement of bridge piers[J]. Sensors and Transducers, 2014, 183(12): 265-272.
[76] XIONG Zhen-wei, LIANG Xin-ling, DAI Xian-xing, et al. Numerical analysis of bridge expansion-induced rail deformation of ballast truck[J]. Applied Mechanics and Materials, 2014, 580-583: 3208-3214.
[77] 王 平,徐井芒,方嘉晟,等.高速铁路轨道结构理论研究进展[J].高速铁路技术,2020,11(2):18-26.WANG Ping, XU Jing-mang, FANG Jia-sheng, et al. Research progress on track structure theory of high-speed railway[J]. High Speed Railway Technology, 2020, 11(2): 18-26.(in Chinese)
[78] 刘文硕,戴公连,秦红禧.滑移支座摩阻效应对高速铁路大跨度桥梁梁轨相互作用的影响[J].中南大学学报(自然科学版),2019,50(3):627-633.LIU Wen-shuo, DAI Gong-lian, QIN Hong-xi. Influence of friction effect of sliding bearing on track-bridge interaction between continuous welded rail and long-span bridge in high-speed railway[J]. Journal of Central South University(Science and Technology), 2019, 50(3): 627-633.(in Chinese)
[79] WANG Hao-yu, MARKINE V. Dynamic behaviour of the track in transitions zones considering the differential settlement[J]. Journal of Sound and Vibration, 2019, 459: 114863.
[80] 戴公连,刘 瑶,刘文硕.大跨度连续梁桥与梁拱组合桥梁轨相互作用比较[J].中南大学学报(自然科学版),2017,48(1):233-238.DAI Gong-lian, LIU Yao, LIU Wen-shuo. Comparison of track-bridge interaction between long-span continuous girder bridge and continuous arch bridge[J]. Journal of Central South University(Science and Technology), 2017, 48(1): 233-238.(in Chinese)
[81] JIANG Li-zhong, ZHANG Yun-tai, FENG Yu-lin, et al. Simplified calculation modeling method of multi-span bridges on high-speed railways under earthquake condition[J]. Bulletin of Earthquake Engineering, 2020, 18(5): 2303-2328.
[82] 冯玉林,蒋丽忠,周旺保,等.桥上CRTS Ⅱ型板式无砟轨道层间关键构件的地震响应规律及参数影响分析[J].铁道标准设计,2020,64(10):30-34.FENG Yu-lin, JIANG Li-zhong, ZHOU Wang-bao, et al. Seismic response laws and parameter impact of CRTS Ⅱ slab ballastless track key components between layers on bridge[J]. Railway Standard Design, 2020, 64(10): 30-34.(in Chinese)
[83] 伊廷华,王 浩,丁幼亮,等.大跨桥梁持续环境荷载的时变效应与服役性能评估[J].中国基础科学,2019,21(6):44-48.YI Ting-hua, WANG Hao, DING You-liang, et al. Time-varying effects and service performance evaluation for long-span bridges under the effects of continuous environmental loads[J]. China Basic Science, 2019, 21(6): 44-48.(in Chinese)
[84] 周凌宇,彭秀生,杨林旗,等.列车荷载下简支梁桥上CRTS Ⅱ型板式无砟轨道经时力学性能研究[J].铁道学报,2021,43(3):120-129.ZHOU Ling-yu, PENG Xiu-sheng, YANG Lin-qi, et al. Time-dependent mechanical properties of CRTS Ⅱ slab track on simply supported beam bridge under train load[J]. Journal of the China Railway Society, 2021, 43(3): 120-129.(in Chinese)
[85] 李龙祥,周凌宇,黄 戡,等.循环荷载下无砟轨道-桥梁结构体系刚度退化性能[J].中南大学学报(自然科学版),2019,50(10):2481-2490.LI Long-xiang, ZHOU Ling-yu, HUANG Kan, et al. Performance of stiffness degradation of structure system in ballastless track-bridge under cyclic load[J]. Journal of Central South University(Science and Technology), 2019, 50(10): 2481-2490.(in Chinese)
[86] 张 迅,温志鹏,刘 蕊,等.泥石流冲击作用下无砟轨道桥梁的动力响应[J].铁道工程学报,2018,35(1):70-77.ZHANG Xun, WEN Zhi-peng, LIU Rui, et al. Dynamic responses of a ballastless track bridge under debris flow impacts[J]. Journal of Railway Engineering Society, 2018, 35(1): 70-77.(in Chinese)
[87] 刘占辉,呼瑞杰,姚昌荣,等.桥梁撞击问题2019年度研究进展[J].土木与环境工程学报,2020,42(5):235-246.LIU Zhan-hui, HU Rui-jie, YAO Chang-rong, et al. State-of-the-art review of bridge impact research in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 235-246.(in Chinese)
[88] 陈树礼,刘永前.洪水冲刷对重载铁路桥梁动力性能影响及加固技术[J].振动与冲击,2018,37(22):187-193.CHEN Shu-li, LIU Yong-qian. Influence research of flood scouring on heavy-haul railway bridge dynamic performances and the corresponding reinforcement technology[J]. Journal of Vibration and Shock, 2018, 37(22): 187-193.(in Chinese)
[89] 赵国堂,刘 钰.CRTS Ⅱ型板式无砟轨道结构层间离缝机理研究[J].铁道学报,2020,42(7):117-126.ZHAO Guo-tang, LIU Yu. Mechanism analysis of delamination of CRTS Ⅱ slab ballastless track structure[J]. Journal of the China Railway Society, 2020, 42(7): 117-126.(in Chinese)
[90] 蔡小培,钟阳龙,阮庆伍,等.混凝土塑性损伤模型在无砟轨道非线性分析中的应用[J].铁道学报,2019,41(5):109-118.CAI Xiao-pei, ZHONG Yang-long, RUAN Qing-wu, et al. Application of concrete damaged plasticity model to nonlinear analysis of ballastless track[J]. Journal of the China Railway Society, 2019, 41(5): 109-118.(in Chinese)
[91] 周凌宇,张广潮,余志武,等.循环温度荷载下无砟轨道结构模型试验研究[J].铁道学报,2020,42(1):82-88.ZHOU Ling-yu, ZHANG Guang-chao, YU Zhi-wu, et al. Model experiments of ballastless track-bridge structure under cyclic temperature load[J]. Journal of the China Railway Society, 2020, 42(1): 82-88.(in Chinese)
[92] 戴公连,粟 淼.预制板式无砟轨道界面脱层失效的数值模拟[J].华南理工大学学报(自然科学版),2016,44(7):102-107,122.DAI Gong-lian, SU Miao. Numerical stimulation of interface delamination failure for prefabricated slab ballastless track[J]. Journal of South China University of Technology(Natural Science Edition), 2016, 44(7): 102-107, 122.(in Chinese)
[93] CAI Xiao-pei, LUO Bi-cheng, ZHONG Yang-long, et al. Arching mechanism of the slab joints in CRTS II slab track under high temperature conditions[J]. Engineering Failure Analysis, 2019, 98: 95-108.
[94] ZHU Sheng-yang, FU Qiang, CAI Cheng-biao, et al. Damage evolution and dynamic response of cement asphalt mortar layer of slab track under vehicle dynamic load[J]. SCIENCE CHINA Technological Sciences, 2014, 57(10): 1883-1894.
[95] 王明昃,蔡成标,朱胜阳,等.基于黏聚力模型的双块式无砟轨道混凝土层间黏结性能试验与分析[J].铁道学报,2016,38(11):88-94.WANG Ming-ze, CAI Cheng-biao, ZHU Sheng-yang, et al. Experimental investigation on adhesive performance of concrete interface of double-block ballastless track based on cohesive zone model[J]. Journal of the China Railway Society, 2016, 38(11): 88-94.(in Chinese)
[96] 赵春发,刘建超,毛海和,等.温度梯度荷载作用下CRTS Ⅱ型板式无砟轨道砂浆层界面损伤分析[J].中国科学:技术科学,2018,48(1):79-86.ZHAO Chun-fa, LIU Jian-chao, MAO Hai-he, et al. Interface damage analysis of CA mortar layer of the CRTSⅡ ballastless slab track under temperature gradient loads[J]. Scientia Sinica(Technologica), 2018, 48(1): 79-86.(in Chinese)
[97] 刘学毅,苏成光,刘 丹,等.轨道板与砂浆粘结试验及内聚力模型参数研究[J].铁道工程学报,2017,34(3):22-28.LIU Xue-yi, SU Cheng-guang, LIU Dan, et al. Research on the bond properties between slab and CA mortar and the parameters study of cohesive model[J]. Journal of Railway Engineering Society, 2017, 34(3): 22-28.(in Chinese)
[98] 钟阳龙,高 亮,王 璞,等.温度荷载下CRTS Ⅱ型轨道板与CA砂浆界面剪切破坏机理[J].工程力学,2018,35(2):230-238.ZHONG Yang-long, GAO Liang, WANG Pu, et al. Mechanism of interfacial shear failure between CRTS Ⅱ slab and ca mortar under temperature loading[J]. Engineering Mechanics, 2018, 35(2): 230-238.(in Chinese)
[99] 蒋忠辉,赵国堂,张合吉,等.车辆轨道关键参数对高速铁路钢轨波磨发展的影响[J].机械工程学报,2018,54(4):57-63.JIANG Zhong-hui, ZHAO Guo-tang, ZHANG He-ji, et al. Effects of vehicle and track key parameters on the rail corrugation of high-speed railways[J]. Journal of Mechanical Engineering, 2018, 54(4): 57-63.(in Chinese)
[100] 赵晓男,陈光雄,康 熙,等.兰新客运专线动车组车轮多边形磨耗的机理[J].西南交通大学学报,2020,55(2):364-371.ZHAO Xiao-nan, CHEN Guang-xiong, KANG Xi, et al. Mechanism of polygonal wear on wheels of electric multiple units on Lanzhou-Xinjiang Passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371.(in Chinese)
[101] CUI Xiao-li, CHENG Zhi, YANG Zong-chao, et al. Study on the phenomenon of rail corrugation on high-speed rail based on the friction-induced vibration and feedback vibration[J]. Vehicle System Dynamics, 2020, 60(2): 413-432.
[102] 崔晓璐,黄 博,陈光雄.抑制轮轨摩擦自激振动的扣件结构多参数拟合研究[J].西南交通大学学报,2021,56(1):68-74.CUI Xiao-lu, HUANG Bo, CHEN Guang-xiong. Research on multi-parameter fitting of fastener structures to suppress wheel-rail friction self-excited vibration[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 68-74.(in Chinese)
[103] SUN Yu, GUO Yu, LYU Kai-kai, et al. Effect of hollow-worn wheels on the evolution of rail wear[J]. Wear, 2019, 436-437: 203032.
[104] 丁 宇.高速铁路无砟轨道疲劳损伤及疲劳可靠性研究[D].北京:北京交通大学,2020.DING Yu. Research on fatigue damage and fatigue reliability of high-speed railway ballastless track[D]. Beijing: Beijing Jiaotong University, 2020.(in Chinese)
[105] GOU Hong-ye, LIU Chang, ZHOU Wen, et al. Dynamic responses of a high-speed train passing a deformed bridge using a vehicle-track-bridge coupled model[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(4): 463-477.
[106] 勾红叶,杨 彪,刘 雨,等.复杂条件下车-轨-桥变形映射关系及行车安全评价[J].中国公路学报,2021,34(4):162-173.GOU Hong-ye, YANG Biao, LIU Yu, et al. Deformation mapping relationship and running safety evaluation of train-track-bridge system for high-speed railway in complex conditions[J]. China Journal of Highway and Transport, 2021, 34(4): 162-173.(in Chinese)
[107] 王昆鹏,夏 禾,郭薇薇,等.桥墩不均匀沉降对高速列车运行安全影响研究[J].振动与冲击,2014,33(6):137-142,155.WANG Kun-peng, XIA He, GUO Wei-wei, et al. Influence of uneven settlement of bridge piers on running safety of high-speed trains[J]. Journal of Vibration and Shock, 2014, 33(6): 137-142, 155.(in Chinese)
[108] 陈兆玮.桥墩沉降下纵连板式轨道与桥面间动态接触行为及其对列车动态特性的影响[J].土木工程学报,2021,54(1):97-105.CHEN Zhao-wei. Dynamic contact behavior between longitudinally-connected-track and bridge deck subject to pier settlement and its influence on running train[J]. China Civil Engineering Journal, 2021, 54(1): 97-105.(in Chinese)
[109] 吴 楠,肖军华,陈建国,等.高速铁路无砟轨道桥梁基础变形对行车的影响[J].铁道工程学报,2017,34(9):58-63,69.WU Nan, XIAO Jun-hua, CHEN Jian-guo, et al. Effect of bridge pier deformation for high speed railway with ballastless track on train running safety and comfort[J]. Journal of Railway Engineering Society, 2017, 34(9): 58-63, 69.(in Chinese)
[110] CAO Yan-mei, XIA He, LU Wen-liang, et al. A numerical method to predict the riding comfort induced by foundation construction close to a high-speed-line bridge[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229(5): 553-564.
[111] JIN Zhi-bing, YUAN Li-gang, PEI Shi-ling. Efficient evaluation of bridge deformation for running safety of railway vehicles using simplified models[J]. Advances in Structural Engineering, 2020, 23(3): 454-467.
[112] 李小珍,肖 军,刘德军,等.附加变形对沪通长江大桥行车性能影响[J].铁道工程学报,2016,33(11):63-68,80.LI Xiao-zhen, XIAO Jun, LIU De-jun, et al. Performance influence of train driving on Shanghai-Nantong Yangtze River Bridge considering additional deformation[J]. Journal of Railway Engineering Society, 2016, 33(11): 63-68, 80.(in Chinese)
[113] 朱志辉,刘 杰,周智辉,等.考虑温度变形的大跨度拱桥行车动力响应分析[J].铁道工程学报,2019,36(3):26-31,44.ZHU Zhi-hui, LIU Jie, ZHOU Zhi-hui, et al. Driving dynamic response analysis of long-span arch bridge considering temperature deformation[J]. Journal of Railway Engineering Society, 2019, 36(3): 26-31, 44.(in Chinese)
[114] 勾红叶,杨 睿.温度梯度作用下高速铁路桥上行车安全性研究[J].铁道工程学报,2020,37(3):47-52.GOU Hong-ye, YANG Rui. Research on the running safety of high-speed railway on bridges under the action of temperature gradients[J]. Journal of Railway Engineering Society, 2020, 37(3): 47-52.(in Chinese)
[115] 周 爽,张 楠,夏 禾,等.高速铁路简支箱梁桥准静态变形对车桥动力响应的影响研究[J].振动与冲击,2019,38(5):209-215,258.ZHOU Shuang, ZHANG Nan, XIA He, et al. Effects of quasi-static deformation of a simply supported high speed railway box girder bridge on dynamic responses of vehicle-bridge coupled system[J]. Journal of Vibration and Shock, 2019, 38(5): 209-215, 258.(in Chinese)
[116] LI Wen-qiu, ZHU Yan, LI Xiao-zhen. Dynamic response of bridges to moving trains: a study on effects of concrete creep and temperature deformation[J]. Applied Mechanics and Materials, 2012, 193-194: 1179-1182.
[117] GOU Hong-ye, LIU Chang, HUA Hui, et al. Mapping relationship between dynamic responses of high-speed trains and additional bridge deformations[J]. Journal of Vibration and Control, 2021, 27(9/10): 1051-1062.
[118] CHEN Zhao-wei, ZHAI Wan-ming, TIAN Guo-ying. Study on the safe value of multi-pier settlement for simply supported girder bridges in high-speed railways[J]. Structure and Infrastructure Engineering, 2018, 14(3): 400-410.
[119] CHEN Zhao-wei, ZHAI Wan-ming, CAI Cheng-biao, et al. Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction[J]. Science China Technological Sciences, 2015, 58(2): 202-210.
[120] 陈兆玮,翟婉明.连续多桥墩沉降与高速列车动态特性间的定量关系研究[J].机械工程学报,2021,57(10):65-76. CHEN Zhao-wei, ZHAI Wan-ming. Relationship between multi-pier settlement and dynamic performance of high-speed train[J]. Journal of Mechanical Engineering, 2021, 57(10): 65-76.(in Chinese)
[121] CHEN Zhao-wei, ZHAI Wan-ming. Theoretical method of determining pier settlement limit value for China's high-speed railway bridges considering complete factors[J]. Engineering Structures, 2020, 209: 109998.
[122] 李 奇,吴 阅,吴 琪.考虑轨道静态变位的简支梁竖向刚度限值研究[J].铁道工程学报,2020,37(3):34-39.LI Qi, WU Yue, WU Qi. Research on the threshold of vertical stiffness of simply supported girders considering static deformation of track[J]. Journal of Railway Engineering Society, 2020, 37(3): 34-39.(in Chinese)
[123]

Memo

Memo:
-
Last Update: 2022-03-20