[1] KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265.
[2] 年夫顺.关于故障预测与健康管理技术的几点认识[J].仪器仪表学报,2018,39(8):1-14.
NIAN Fu-shun. Viewpoints about the prognostic and health management[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 1-14.(in Chinese)
[3] ZHAO Ze-qi, LIANG Bin, WANG Xue-qian, et al. Remaining useful life prediction of aircraft engine based on degradation pattern learning[J]. Reliability Engineering and SystemSafety, 2017, 164: 74-83.
[4] LIU Hui, LIU Zhen-yu, JIA Wei-qiang, et al. A novel deep learning-based encoder-decoder model for remaining useful life prediction[C]∥IEEE. Proceedings of the 2019 International Joint Conference on Neural Networks. Washington DC: IEEE, 2019: 1-8.
[5] LIM P, GOH C K, TAN K C. A time window neuralnetwork based framework for remaining useful life estimation[C]∥IEEE. Proceedings of the 2016 International Joint Conference on Neural Networks. Washington DC: IEEE, 2016: 1746-1753.
[6] LIAO Lin-xia, KÖTTIG F. Review of hybrid prognostics
approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction[J]. IEEE Transactions on Reliability, 2014, 63(1): 191-207.
[7] 朱 朔,白瑞林,吉 峰.改进CHSMM 的滚动轴承剩余寿命预测方法[J].机械传动,2018,42(10):46-52,95.
ZHU Shuo, BAI Rui-lin, JI Feng. Rolling bearing remaining useful life prognosis method based on improved CHSMM[J]. Journal of Mechanical Transmission, 2018, 42(10): 46-52, 95.(in Chinese)
[8] LI C J, LEE H. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics[J]. Mechanical Systems and Signal Processing, 2005, 19(4): 836-846.
[9] FAN Jia-jie, YUNG K C, PECHT M. Physics-of-failure-
basedprognostics and health management for high-power white light-emitting diode lighting[J]. IEEE Transactions on Device and Materials Reliability, 2011, 11(3): 407-416.
[10] 姜媛媛,曾文文,沈静静,等.基于凸优化-寿命参数退化机理模型的锂离子电池剩余使用寿命预测[J].电力系统及其自动化学报,2019,31(3):23-28.
JIANG Yuan-yuan, ZENG Wen-wen, SHEN Jing-jing, et al. Prediction of remaining useful life of lithium-ion battery based on convex optimization-life parameter degradation mechanism model[J]. Proceedings of the CSU-EPSA, 2019, 31(3): 23-28.(in Chinese)
[11] 张继冬,邹益胜,邓佳林,等.基于全卷积层神经网络的轴承剩余寿命预测[J].中国机械工程,2019,30(18):2231-2235.
ZHANG Ji-dong, ZOU Yi-sheng, DENG Jia-lin, et al. Bearing remaining life prediction based on full convolutional layer neural networks[J]. China Mechanical Engineering, 2019, 30(18): 2231-2235.(in Chinese)
[12] 陈自强.基于LSTM网络的设备健康状况评估与剩余寿命预测方法的研究[D].合肥:中国科学技术大学,2019.
CHEN Zi-qiang. Research on equipment health assessment and remaining useful life prediction method based on LSTM[D]. Hefei: University of Science and Technology of China, 2019.(in Chinese)
[13] KONG Zheng-min, CUI Yan-de, XIA Zhou, et al. Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[J]. Applied Sciences, 2019, DOI:10.3390/app9194156.
[14] 葛 阳,郭兰中,牛曙光,等.基于t-SNE和LSTM的旋转机械剩余寿命预测[J].振动与冲击,2020,39(7):223-231,273.
GE Yang, GUO Lan-zhong, NIU Shu-guang, et al. Prediction of remaining useful life based on t-SNE and LSTM for rotating machinery[J]. Journal of Vibration and Shock, 2020, 39(7): 223-231, 273.(in Chinese)
[15] 康守强,周 月,王玉静,等.基于改进SAE和双向LSTM的滚动轴承RUL预测方法[J].自动化学报,2020,DOI:10.16383/j.aas.c190796.
KANG Shou-qiang, ZHOU Yue, WANG Yu-jing, et al. RUL prediction method of a rolling bearing based on improved SAE and Bi-LSTM[J]. Acta Automatica Sinica, 2020, DOI: 10.16383/j.aas.c190796.(in Chinese)
[16] SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117.
[17] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Science, 2014, DOI: 10.3115/v1/D14-1179.
[18] ZHU Yong-hua, ZHANG Wei-lin, CHEN Yi-ha, et al. A
novel approach to workload prediction using attention-based LSTM encoder-decoder network in cloud environment[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 1-18.
[19] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.
[20] HOCHREITER S, SCHMIDHUBER J. Long short-term
memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[21] CHEN Yuan-hang, PENG Gao-liang, ZHU Zhi-yu, et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing Journal, 2019, DOI: https:∥doi.org/10.1016/j.asoc.2019.105919.
[22] 李 敏,李红娇,陈 杰.差分隐私保护下的Adam优化算法研究[J].计算机应用与软件,2020,37(6):253-258,296.
LI Min, LI Hong-jiao, CHEN Jie. Adam optimization algorithm based on differential privacy protection[J]. Computer Applications and Software, 2020, 37(6): 253-258, 296.(in Chinese)
[23] GOU Peng-qi, YU Jian-jun. A nonlinear ANN equalizer with mini-batch gradient descent in 40Gbaud PAM-8 IM/DD system[J]. Optical Fiber Technology, 2018, 46: 113-117.
[24] 李 杰,贾渊杰,张志新,等.基于融合神经网络的航空发动机剩余寿命预测[J].推进技术,2021,42(8):1725-1734.
LI Jie, JIA Yuan-jie, ZHANG Zhi-xin, et al. Remaining useful life prediction of aeroengine based on fusion neural network[J]. Journal of Propulsion Technology, 2021, 42(8): 1725-1734.(in Chinese)
[25] ZHAO Zhi-bin, WU Jing-yao, LI Tian-fu, et al. Challenges and opportunities of AI-enabled monitoring, diagnosis and prognosis: a review[J]. Chinese Journal of Mechanical Engineering, 2021, 34(3): 16-44.
[26] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]∥IEEE. 2008 International Conference on Prognostics and Health Management. Washington DC: IEEE, 2008: 1-9.
[27] ZHENG Shuai, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]∥IEEE. 2017 IEEE International Conference on Prognostics and Health Management(ICPHM). Washington DC: IEEE, 2017: 88-95.
[28] HSU C S, JIANG J R. Remaining useful life estimation using long short-term memory deep learning[C]∥IEEE. International Conference on Applied System Invention. Washington DC: IEEE, 2018: 58-61.
[29] ZHANG C, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306-2318.
[30] LIM P, GOH C K, TAN K C, A time window neural network based framework for remaining useful life estimation[C]∥IEEE. International Joint Conference on Neural Networks. Washington DC: IEEE, 2016: 1746-1753.
[31] BABU G S, ZHAO Pei-lin, LI Xiao-li. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]∥Springer. International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2016: 214-228.
[32] AL-DULAIMI A, ZABIHI S, ASIF A, et al. A multimodal and hybrid deep neural network model for remaining useful life estimation[J]. Computers in Industry, 2019, 108: 186-196.