[1] GAO Guang-jun, WANG Shuai. Crashworthiness of passenger
rail vehicles: a review[J]. International Journal of Crashworthiness, 2019, 24(6): 664-676.
[2] PENG Yong, HOU Lin, CHE Quan-wei, et al. Multi-objective robust optimization design of a front-end underframe structure for a high-speed train[J]. Engineering Optimization, 2019, 51(5): 753-774.
[3] LU Zhai-jun, LI Ben-huai, YANG Cheng-xing, et al. Numerical and experimental study on the design strategy of a new collapse zone structure for railway vehicles[J]. International Journal of Crashworthiness, 2017, 22(5): 488-502.
[4] DING Zhao-yang, ZHENG Zhi-jun, YU Ji-lin. A wave
propagation model of distributed energy absorption system for trains[J]. International Journal of Crashworthiness, 2019, 24(5): 508-522.
[5] YU Yao, GAO Guang-jun, GUAN Wei-yuan, et al. Scale
similitude rules with acceleration consistency for trains collision[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2466-2480.
[6] QIN Rui-xian, CHEN Bing-zhi. Optimization design on
functionally graded CEM for trains based on LPM model with calibrated parameters[J]. Shock and Vibration, 2020, 2020: 8884865.
[7] YAO Shu-guang, YAN Kai-bo, LU Si-si, et al. Energy-absorption optimisation of locomotives and scaled equivalent model validation[J]. International Journal of Crashworthiness, 2017, 22(4): 441-452.
[8] 张秧聪,许 平,彭 勇,等.高速列车前端多胞吸能结构的耐撞性优化[J].振动与冲击,2017,36(12):31-36.
ZHANG Yang-cong, XU Ping, PENG Yong, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures[J]. Journal of Vibration and Shock, 2017, 36(12): 31-36.(in Chinese)
[9] XU Ping, LU Si-si, YAN Kai-bo, et al. Energy absorption design study of subway vehicles based on a scaled equivalent model test[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 3-15.
[10] STUART B,阎 锋.整列车碰撞动态特性与提高列车防碰撞性总结报告[J].国外铁道车辆,2017,54(5):1-7.
STUART B, YAN Feng. Summary report on dynamic behavior of the whole train in collisions and the improvement of the crashworthiness[J]. Foreign Rolling Stock, 2017, 54(5): 1-7.(in Chinese)
[11] 田红旗.客运列车耐冲击吸能车体设计方法[J].交通运输工程学报,2001,1(1):110-114.
TIAN Hong-qi. Crashworthy energy absorbing car-body design method for passenger train[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 110-114.(in Chinese)
[12] UJITA Y. Evaluation of strength of end structures in
intermediate rolling stock of a train during train collision accidents[J]. Quarterly Report of RTRI, 2014, 55(1): 14-19.
[13] 王卉子,李欣伟,范乐天,等.新型高速动车组车体纵向承载能力分析[J].大连交通大学学报,2013,34(5):29-32.
WANG Hui-zi, LI Xin-wei, FAN Le-tian, et al. Discussion of lengthway load carrying capacity of new type high speed train unit[J]. Journal of Dalian Jiaotong University, 2013, 34(5): 29-32.(in Chinese)
[14] CAROLAN M, PERLMAN B, TYRELL D. Crippling test
of a Budd pioneer passenger car[C]∥American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2012 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2012: 225-235.
[15] LLANA P, JACOBSEN K, STRINGFELLOW R. Locomotive crash energy management coupling tests evaluation and vehicle-to-vehicle test preparation[C]∥American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2019 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2019: JRC2019-1259.
[16] LLANA P, JACOBSEN K, STRINGFELLOW R. Locomotive crash energy management vehicle-to-vehicle impact test results[C]∥American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2020 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2020: JRC2020-8030.
[17] CAROLAN M, PERLMAN B, TYRELL D, et al. Crippling test of a Budd M-1 passenger railcar:test and analysis results[C]∥American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2014 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2014: 336-246.
[18] CAROLAN M, MUHLANGER M, PERLMAN B, et al.
Occupied volume integrity testing: elastic test results and analyses[C]∥American Society of Mechanical Engineers. Proceedings of ASME 2011 Rail Transportation Division Fall Technical Conference. New York: American Society of Mechanical Engineers, 2011: RTDF2011-67010.
[19] LLANA P, JACOBSEN K, TYRELL D. Conventional Locomotive Coupling Tests[C]∥American Society of Mechanical Engineers. Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. New York: American Society of Mechanical Engineers, 2016: IMECE2016-67236.
[20] UJITA Y,周贤全.列车碰撞事故中中间车辆端部结构强度的评估[J].国外铁道车辆,2016,53(1):41-45.
UJITA Y, ZHOU Xian-quan. Evaluation of the strength of the end structures in intermediate rolling stock of a train during collision accidents[J]. Foreign Rolling Stock, 2016, 53(1): 41-45.(in Chinese)
[21] 早势刚,彭惠民.列车碰撞安全性研究[J].国外铁道机车与动车,2017(2):44-48.
HAYASHI Gang, PENG Hui-min. Research on the safety of train collision[J]. Foreign Railway Locomotive and Motor Car, 2017(2): 44-48.(in Chinese)
[22] 川崎健,蔡千华. 铁道车辆用铝合金吸能结构的准静态压缩试验及其数值分析[J].国外铁道车辆,2009,46(3):24-29.
KAWASAKI K, CAI Qian-hua. Numerical analysis and quasi-static compression test on energy absorption[J]. Foreign Railway Vehicle, 2009, 46(3): 24-29.(in Chinese)
[23] 唐愉真.地铁车辆端梁主承载结构动态极限承载能力研究[D].哈尔滨:哈尔滨工业大学,2017.
TANG Yu-zhen. Study on dynamic ultimate bearing capacity of metro vehicle end beam main bearing structure[D]. Harbin: Harbin Institute of Technology, 2017.(in Chinese)
[24] 严 成,欧卓成,段卓平,等.脆性材料动态强度应变率效应[J].爆炸与冲击,2011,31(4):423-427.
YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, et al. Strain-rate effects on dynamic strength of brittle materials[J]. Explosion and Shock Waves, 2011, 31(4): 423-427.(in Chinese)
[25] 彭一波,王 罡,潘尚峰,等.考虑动态回复过程的6005A铝合金动态力学模型[J].机械工程学报,2014,50(10):32-39.
PENG Yi-bo, WANG Gang, PAN Shang-feng, et al. 6005A aluminum dynamic mechanical model considering the dynamic recovery process[J]. Journal of Mechanical Engineering,2014, 50(10): 32-39.(in Chinese)
[26] BÖRVIK T, CLAUSEN A H, ERIKSSON M, et al. Experimental and numerical study on the perforation of AA6005-T6 panels[J]. International Journal of Impact Engineering, 2005, 32(1): 35-64.
[27] OOSTERKAMP L D, IVANKOVIC A, VENIZELOS G.
High strain rate properties of selected aluminium alloys[J]. Materials Science and Engineering A, 2000, 278(1): 225-235.
[28] PENG Yong, CHEN Xuan-zhen, PENG Shan, et al. Strain rate dependent constitutive and low stress triaxiality fracture behavior investigation of 6005 Al alloy[J]. Advances in Materials Science and Engineering, 2018, 2018: 2712937.
[29] CHEN Xuan-zhen, PENG Yong, PENG Shan, et al. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities[J]. PLoS One, 2017, 12(7): e0181983.
[30] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548.
[31] 黄西成,胡文军.Johnson-Cook本构参数的确定方法[C]∥爆炸力学学会实验技术专业组. 第六届全国爆炸力学实验技术学术会议论文集.长沙:爆炸力学学会实验技术专业组,2010:308-315.
HUANG Xi-cheng, HU Wen-jun. Determining method for parameters of Johnson-Cook constitutive model[C]∥Experimental Technical Professional Group of Institute of Explosive Mechanics. Proceedings of 6th National Conference on Experimental Technology of Explosive Mechanics. Changsha: Experimental Technical Professional Group of Institute of Explosive Mechanics, 2010: 308-315.(in Chinese)