[1] 杨 光,任尊松,孙守光.考虑弹性的高速旋转轮对振动特性研究[J].振动工程学报,2016,29(4):714-719.
YANG Guang, REN Zun-song, SUN Shou-guang. Research on the vibration characteristics of high-speed rotation elastic wheelset [J]. Journal of Vibration Engineering, 2016, 29(4): 714-719.(in Chinese)
[2] 李 哲,高军伟,张柏娜.基于RFID的列车轮对识别与振动监控系统设计[J].仪表技术与传感器,2020(11):64-67,73.
LI Zhe, GAO Jun-wei, ZHANG Bai-na. Design of train wheelset identification and vibration monitoring system based on RFID[J]. Instrument Technique and Sensor, 2020(11): 64-67, 73.(in Chinese)
[3] 庞学苗,李建伟,邢宗义,等.基于频率切片小波变换的轨道列车轮对振动信号分析[J].铁道机车车辆,2015,35(增刊1):26-31.
PANG Xue-miao, LI Jian-wei, XING Zong-yi, et al. Analysis of wheel-rail vibration signal based on frequency sliced wavelet transform[J]. Railway Locomotive and Car, 2015, 35(Sup1): 26-31.(in Chinese)
[4] 马卫华,许自强,罗世辉,等.轮轴弯曲刚度对轮轨垂向动态载荷影响分析[J].机械工程学报,2012,48(6):96-101.
MA Wei-hua, XU Zi-qiang, LUO Shi-hui, et al. Influence of the wheel axle bending stiffness on the wheel/rail vertical dynamical load[J]. Chinese Journal of Mechanical Engineering, 2012, 48(6): 96-101.(in Chinese)
[5] 张宝安.柔性轮对结构振动对车辆动力学性能的影响[J].计算机辅助工程,2013,22(3):19-23,28.
ZHANG Bao-an.Effect of structure vibration of flexible wheelset on vehicle dynamics performance[J]. Computer Aided Engineering, 2013, 22(3): 19-23, 28.(in Chinese)
[6] HAUG E J, WEHAGE R A, MANI N K. Design sensitivity analysis of large-scale constrained dynamic mechanical systems[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1984, 106(2): 156-162.
[7] 余衍然,李 成,姚林泉,等.基于傅里叶幅值检验扩展法的轨道车辆垂向模型全局灵敏度分析[J].振动与冲击,2014,33(6):77-81.
YU Yan-ran, LI Cheng, YAO Lin-quan, et al. Global sensitivity analysis on vertical model of railway vehicle based on extended Fourier amplitude sensitivity test[J]. Journal of Vibration and Shock, 2014, 33(6): 77-81.(in Chinese)
[8] 张旭明,王德信.结构灵敏度分析的解析方法[J].河海大学学报,1998,26(5):47-52.
ZHANG Xu-ming, WANG De-xin. Analytical method of structural sensitivity analysis[J]. Journal of Hohai University, 1998, 28(5): 47-52.(in Chinese)
[9] 聂祚兴,于德介,李 蓉,等.基于Sobol'法的车身噪声传递函数全局灵敏度分析[J].中国机械工程,2012,23(14):1753-1757.
NIE Zuo-xing, YU De-jie, LI Rong, et al. Global sensitivity analysis of autobodies' noise transfer functions based on Sobol' method[J]. China Mechanical Engineering, 2012, 23(14): 1753-1757.(in Chinese)
[10] SOBOL I M, LEVITAN Y L. On the use of variance
reducing multipliers in Monte Carlo computations of a global sensitivity index[J]. Computer Physics Communications, 1999, 117(1/2): 52-61.
[11] SOBOL I M. Global sensitivity indices for nonlinear
mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280.
[12] SOBOL I M. Theorems and examples on high dimensional
model representation[J].Reliability Engineering and System Safety, 2003, 79(2): 187-193.
[13] BIGONI D, TRUE H, ENGSIG-KARUP A P. Sensitivity
analysis of the critical speed in railway vehicle dynamics[J]. Vehicle System Dynamics, 2014, 52(Sup1): 272-286.
[14] 邵永生,李 成,成 明.基于Sobol'法的轨道车辆平稳性的全局灵敏度分析[J].铁道科学与工程学报,2018,15(3):748-754.
SHAO Yong-sheng, LI Cheng, CHENG Ming. Sensitivity analysis of rail vehicle front end energy absorption structure based on Sobol' method[J]. Journal of Railway Science and Engineering, 2018, 15(3): 748-754.(in Chinese)
[15] 陈秉智,汪驹畅.基于Sobol'法的轨道车辆前端吸能结构灵敏度分析[J].铁道学报,2020,42(3):63-68.
CHEN Bing-zhi, WANG Ju-chang. Global sensitivity analysis of energy-absorbing structure for rail vehicle based on Sobol' method[J]. Journal of the China Railway Society, 2020, 42(3): 63-68.(in Chinese)
[16] 张慧云.基于径向基函数网络的高速列车参数 设计与优化[D].成都:西南交通大学,2015.
ZHANG Hui-yun. The high-speed train parameter design and optimazation based on radial basis function[D]. Chengdu: Southwest Jiaotong University, 2015.(in Chinese)
[17] 周生通,祁 强,周新建,等.轴弯曲与不平衡柔性转子共振稳态响应随机分析[J].计算力学学报,2020,37(1):20-27.
ZHOU Sheng-tong, QI Qiang, ZHOU Xin-jian, et al. Stochastic analysis of resonance steady-state response of rotor with shaft bending and unbalance faults[J]. Chinese Journal of Computational Mechanics, 2020, 37(1): 20-27.(in Chinese)
[18] 周生通,张 沛,肖 乾,等.单盘悬臂转子启动过程峰值响应全局灵敏度分析[J].振动与冲击,2021,40(11):17-25.
ZHOU Sheng-tong, ZHANG Pei, XIAO Qian, et al. Global sensitivity analysis for peak response of a cantilevered rotor with single disc during start-up[J].Journal of Vibration and Shock, 2021, 40(11): 17-25.(in Chinese)
[19] 周生通,王 迪,肖 乾,等.基于广义多项式混沌的跨座式单轨车辆随机平稳性分析[J].振动与冲击,2021,40(6):190-200.
ZHOU Sheng-tong, WANG Di, XIAO Qian, et al. Stochastic stationarity analysis of a straddle monorail vehicle using the generalized polynomial chaos method[J]. Journal of Vibration and Shock, 2021, 40(6): 190-200.(in Chinese)
[20] FORMAGGIA L, GUADAGNINI A, IMPERIALI I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model[J]. Computational Geosciences, 2013, 17(1): 25-42.
[21] SUDRET B. Global sensitivity analysis using polynomial
chaos expansions[J]. Reliability Engineering and System Safety, 2008, 93(7): 964-979.
[22] GARCIA-CABREJO O, VALOCCHI A. Global sensitivity
analysis for multivariate output using polynomial chaos expansion[J]. Reliability Engineering and System Safety, 2014, 126: 25-36.
[23] 黄悦琛,宋长青,郭荣化.基于广义多项式混沌展开的无人机飞行性能不确定性分析[J].飞行力学,2021,39(4):25-32,51.
HUANG Yue-chen, SONG Chang-qing, GUO Rong-hua. Uncertainty analysis of unmanned aerial vehicle flight performance using general polynomial chaos expansion[J]. Flight Dynamics, 2021, 39(4): 25-32, 51.(in Chinese)
[24] 王 晗,严 正,徐潇源,等.基于稀疏多项式混沌展开的孤岛微电网全局灵敏度分析[J].电力系统自动化,2019,43(10):44-52.
WANG Han, YAN Zheng, XU Xiao-yuan, et al. Global sensitivity analysisfor islanded microgrid based on sparse polynomial chaos expansion[J]. Automation of Electric Power Systems, 2019, 43(10): 44-52.(in Chinese)
[25] 刘安民,高 峰,张青斌,等.基于多项式混沌展开方法的翼伞飞行不确定性[J].兵工学报,2021,42(7):1392-1399.
LIU An-min, GAO Feng, ZHANG Qing-bin, et al.Application of PCE method in parafoil-flight uncertainty analysis[J]. Acta Armamentarii, 2021, 42(7): 1392-1399.(in Chinese)
[26] WIENER N, The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897.
[27] GHANEM R, GHOSH D. Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition[J]. International Journal For Numerical Methods in Engineering. 2007, 72(4): 486-504.
[28] 胡 军,张树道.基于多项式混沌的全局敏感度分析[J].计算物理,2016,33(1):1-14.
HU Jun, ZHANG Shu-dao. Global sensitivity analysis based on polynomial chaos[J]. Chinese Journal of Computational Physics, 2016, 33(1): 1-14.(in Chinese)
[29] 赵 威,卜令泽,王 伟.稀疏偏最小二乘回归-多项式混沌展开代理模型方法[J].工程力学,2018,35(9):44-53.
ZHAO Wei, BU Ling-ze, WANG Wei. Sparse partial least squares regression-polynomial chaos expansion metamodeling method[J]. Engineering Mechanics, 2018, 35(9): 44-53.(in Chinese)
[30] 周如意,丰文浩,邓宗全,等.轮地力学模型参数灵敏度分析与主参数估计[J].航空学报,2021,42(1):524076.
ZHOU Ru-yi, FENG Wen-hao, DENG Zong-quan, et al. Sensitivity analysis and dominant parameter estimation of wheel-terrain interaction model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 524076.(in Chinese)
[31] 付 娜,李成辉,赵振航,等.车辆-轨道耦合作用下桥上减振双块式无砟轨道减振性能研究[J].铁道科学与工程学报,2018,15(5):1095-1102.
FU Na, LI Cheng-hui, ZHAO Zhen-hang, et al. Study on the vibration reduction performance of double-block ballastless damping track on bridge under vehicle-track coupling effect[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1095-1102.(in Chinese)