[1] 吴萌岭,马天和,田 春,等.列车制动技术发展趋势探讨[J].中国铁道科学,2019,40(1):134-144.
WU Meng-ling, MA Tian-he, TIAN Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144.(in Chinese)
[2] MEINS J, MILLER L, MAYER W J. The high speed maglev transport system transrapid[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811.
[3] HE J L, ROTE D M, COFFEY H T. Survey of foreign maglev systems[R]. Argonne: Argonne National Laboratory, 1992.
[4] OBARA T, KUMAGAI N, TAKIGUCHI T. Development of hybrid rail brake[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1995, 209(2): 61-65.
[5] 陈爱芬. ICE 3率先采用轨道涡流制动运营[J].国外铁道车辆,2001,38(4):37-39.
CHEN Ai-fen. ICE 3 pioneers application of eddy-current rail brakes[J]. Foreign Rolling Stock, 2001, 38(4): 37-39.(in Chinese)
[6] 林台平,林 晖.电磁轨道制动装置的研究[J].中国铁道科学,1997,18(1):16-30.
LIN Tai-ping, LIN Hui. Study of electro-magnetic track brake equipment for railway [J]. China Railway Science, 1997, 18(1): 16-30.(in Chinese)
[7] TANIGUCHI M. The Japanese magnetic levitation trains[J]. Built Environment, 1993, 19(3): 234-243.
[8] HE J L, ROTE D M, COFFEY H T. Study of Japanese electrodynamic-suspension maglev systems[R]. Argonne: Argonne National Laboratory, 1994.
[9] ARAI H, KANNO S, FUJINO K, et al. Development of a brake system for shinkansen speed increase[J]. JR East Technical Review, 2010, 16: 17-21.
[10] NAGASAKI Y, KOKAGO R, NAKAMURA M, et al.
Auxiliary power unit of series E956 high-speed experimental shinkansen train for East Japan Railway Company[J]. Toyo Denki Technical Journal, 2021(143): 10-19.
[11] 苗秀娟,梁习锋.高速列车空气制动板的研究[C]∥中国空气动力学学会,2004年度中国工业空气动力学学术论文集.北京:中国空气动力学学会,2004:137-141.
MIAO Xiu-juan, LIANG Xi-feng. Research on air brake board of high-speed train[C]∥Industrial Aerodynamics Conference. 2004 Industrial Aerodynamics Conference. Beijing: Industrial Aerodynamics Conference, 2004: 137-141.(in Chinese)
[12] 崔 涛,张卫华.翼板制动气动性能数值分析[J].铁道机车车辆,2009,29(6):1-2,27.
CUI Tao, ZHANG Wei-hua. Aerodynamic quality analysis of wing plate brake[J]. Railway Locomotive and Car, 2009, 29(6): 1-2, 27.(in Chinese)
[13] 田 春,吴萌岭,任利惠,等.空气动力制动研究初探[J].铁道车辆,2009,47(3):10-12,47.
TIAN Chun, WU Meng-ling, REN Li-hui, et al. Initial discussion of research in aerodynamic brake[J]. Rolling Stock, 2009, 47(3): 10-12, 47.(in Chinese)
[14] PUHARIAC'G M, MATIAC'G D, LINIAC'G S, et al.Determination of braking force on the aerodynamic brake by numerical simulations[J]. FME Transactions, 2014, 42(2): 106-111.
[15] LEE M, BHANDARI B. Theapplication of aerodynamic brake for high-speed trains[J]. Journal of Mechanical Science and Technology, 2018, 32(12): 5749-5754.
[16] YOSHIMURA M, SAITO S, HOSAKA S, et al.
Characteristics of the aerodynamic brake of the vehicle on the Yamanashi maglev test line[J]. Quarterly Report of RTRI, 2000, 41(2): 74-78.
[17] 田 春,吴萌岭,费巍巍,等.空气动力制动制动风翼纵向位置制动力规律[J]. 同济大学学报(自然科学版),2011,39(5):705-709.
TIAN Chun, WU Meng-ling, FEI Wei-wei, et al. Rule of aerodynamics braking force in longitudinal different position of high-speed train[J]. Journal of Tongji University(Natural Science), 2011, 39(5): 705-709.(in Chinese)
[18] 田 春,吴萌岭,朱洋永,等.空气动力制动风翼在车上布置数值仿真研究[J].中国铁道科学,2012,33(3):98-101.
TIAN Chun, WU Meng-ling, ZHU Yang-yong, et al. Numerical simulation research on the arrangement of the aerodynamic braking plates in the train[J]. China Railway Science, 2012, 33(3): 98-101.(in Chinese)
[19] 高立强,奚 鹰,王国华,等.基于CFD的高速列车空气动力制动风翼板型研究[J].中国工程机械学报,2015,13(3):236-241.
GAO Li-qiang, XI Ying, WANG Guo-hua, et al. CFD-based study on aerodynamic brake wind-panel forms for high-speed trfferain[J]. Chinese Journal of Construction Machinery, 2015, 13(3): 236-241.(in Chinese)
[20] 高立强,胡 雄,孙德建,等.空气动力制动前排风翼板制动力影响规律[J].铁道学报,2018,40(1):31-37.
GAO Li-qiang, HU Xiong, SUN De-jian, et al. Influence rule of aerodynamics braking force from the front brake panel[J]. Journal of the China Railway Society, 2018, 40(1): 31-37.(in Chinese)
[21] TAKAMI H. Development of small-size and light-weight
aerodynamic brake for high-speed railway[J]. Transactions of the Japan Society of Mechanical Engineers, Part B, 2020, 86(881): 19-295.
[22] TAKAMI H, MAEKAWA H. Characteristics of awind-actuated aerodynamic braking device for high-speed trains[J]. Journal of Physics: Conference Series, 2017, 822(1): 012061.
[23] TAKAMI H. Development of small-sized aerodynamic brake for high-speed railway[J]. Transactions of the Japan Society of Mechanical Engineers, Part B, 2013, 79(803): 1254-1263.
[24] NIU Ji-qiang, WANG Yue-ming, WU Dan, et al. Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 655-668.
[25] NIU Ji-qiang, WANG Yue-ming, LIU Feng, et al. Numerical study on the effect of a downstream braking plate on the detailed flow field and unsteady aerodynamic characteristics of an upstream braking plate with or without a crosswind[J]. Vehicle System Dynamics, 2021, 59(5): 657-674.
[26] NIU Ji-qiang, WANG Yue-ming, LI Rui, et al. Comparison of aerodynamic characteristics of high-speed train for different configurations of aerodynamic braking plates installed in inter-car gap region[J]. Flow, Turbulence and Combustion, 2021, 106(1): 139-161.
[27] 孙文静,田 春,周劲松,等.高速列车空气动力制动会车动力学性能[J].同济大学学报(自然科学版),2014,42(9):1401-1407.
SUN Wen-jing, TIAN Chun, ZHOU Jin-song, et al. Dynamics performance of high-speed train with aerodynamic brake under crossing[J]. Journal of Tongji University(Natural Science), 2014, 42(9): 1401-1407.(in Chinese)
[28] ZHAI Ju-jia, NIU Ji-qiang, WANG Yue-ming, et al. Unsteady flow and aerodynamic behavior of high-speed train braking plates with and without crosswinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104309.
[29] SAWADA K. Development of magnetically levitated high
speed transport system in Japan[J]. IEEE Transactions on Magnetics, 1996, 32(4): 2230-2235.
[30] SHIRAKUNI N, ENDO Y, TAKAHASHI K, et al. Overview of new vehicles for the Yamanashi maglev test line[C]∥The International Maglev Board. Proceedings of the 17th international conference on magnetically levitated systems. Munich: The International Maglev Board, 2002: 05104.
[31] 吉村正文.宫崎试验线车辆空气动力制动装置的开发[J].国外铁道车辆,1996(5):44-48.
MASAFUMI Y. Development of aerodynamic brake of Miyazaki maglev test line vehicle[J]. Foreign Rolling Stock, 1996(5): 44-48.(in Chinese)
[32] ZUO Jian-yong, WU Meng-ling, TIAN Chun, et al. Aerodynamic braking device for high-speed trains: design, simulation and experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(3): 260-270.
[33] 李瑞平,周 宁,张卫华,等.受电弓气动抬升力计算方法与分析[J].铁道学报,2012,34(8):26-32.
LI Rui-ping,ZHOU Ning,ZHANG Wei-hua,et al. Calculation and analysis of pantograph aerodynamic uplift force[J]. Journal of the China Railway Society, 2012, 34(8): 26-32.(in Chinese)
[34] 刘 杰,李人宪,陈 琳,等.高速列车空调系统及车内流场分析[J].西南交通大学学报,2012,47(1):127-132.
LIU Jie, LI Ren-xian, CHEN Lin, et al. Analysis of air flow field in air conditioning system and compartments of high-speed trains[J]. Journal of Southwest Jiaotong University, 2012, 47(1): 127-132.(in Chinese)
[35] 田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9.
TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9.(in Chinese)
[36] 沈志云.高速列车的动态环境及其技术的根本特点[J].铁道学报,2006(4):1-5.
SHEN Zhi-yun. Dynamic environment of high-speed train and its distinguished technology[J]. Journal of the China Railway Society, 2006(4): 1-5.(in Chinese)
[37] 郭薇薇,夏 禾,徐幼麟.风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J].工程力学,2006(2):103-110.
GUO Wei-wei, XIA He, XU You-lin. Dynamic response of long span suspension bridge and running safety of train under wind action[J]. Engineering Mechanics, 2006(2): 103-110.(in Chinese)
[38] WANG Xiao-liang, WANG Fu-xin, LI Ya-lin. Aerodynamic characteristics of high-lift devices with downward deflection of spoiler[J]. Journal of Aircraft, 2011, 48(2): 730-735.
[39] ZHU Ji-hong, ZHANG Wei-hong, XIA Liang. Topology
optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622.
[40] LIU Jie, OU Hai-feng, HE Jun-feng, et al. Topological design of a lightweight sandwich aircraft spoiler[J]. Materials, 2019, 12(19): 3225.
[41] 金 朋,宋笔锋,钟小平,等.基于几何因子的复合材料层合板颤振特性[J].复合材料学报,2015,32(6):1814-1823.
JIN Peng, SONG Bi-feng, ZHONG Xiao-ping, et al. Flutter characteristic of composite laminates with lamination parameters[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1814-1823.(in Chinese)
[42] GAND F. Zonaldetached eddy simulation of a civil aircraft with a deflected spoiler[J]. AIAA Journal, 2012, 51(3): 697-706.
[43] TIAN Yun, FENG Pei-hua, LIU Pei-qing, et al. Spoiler
upward deflection on transonic buffet control of supercritical airfoil and wing[J]. Journal of Aircraft, 2017, 54(3): 1229-1233.
[44] 左建勇,朱晓宇,吴萌岭.高速列车风阻制动风翼抗鸟撞分析[J].振动与冲击,2014,33(22):30-34.
ZUO Jian-yong, ZHU Xiao-yu, WU Meng-ling. Numerical analysis of anti-bird impact performance of aerodynamic brake wing on high-speed train[J]. Journal of Vibration and Shock, 2014, 33(22): 30-34.(in Chinese)
[45] 管公顺,张 伟,庞宝君,等.铝球弹丸高速正撞击薄铝板穿孔研究[J].高压物理学报,2005,19(2):132-138.
GUAN Gong-shun, ZHANG Wei, PANG Bao-jun, et al. A study of penetration hole diameter in thin Al-plate by hypervelocity impact of Al-spheres[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 132-138.(in Chinese)[46] 张 伟,马文来,马志涛,等.弹丸超高速撞击铝靶成坑数值模拟[J].高压物理学报,2006,20(1):1-5.
ZHANG Wei, MA Wen-lai, MA Zhi-tao, et al. Numerical simulation of craters produced by projectile hypervelocity impact on aluminum targets[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 1-5.(in Chinese)
[47] 于连超,陈 伟,关玉璞,等.复合材料层合板鸟撞损伤及吸能影响因素数值分析[J].航空动力学报,2008,23(6):1106-1110.
YU Lian-chao, CHEN Wei, GUAN Yu-pu, et al. Numerical analysis of the damage of bird impaction against composite laminates and the influence factors on absorbing energy[J]. Journal of Aerospace Power, 2008, 23(6): 1106-1110.(in Chinese)
[48] GEORGIADIS S, GUNNION A J, THOMSON R S, et al.
Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge[J]. Composite Structures, 2008, 86(1): 258-268.
[49] 刘权良,尹 伟,夏 峰.飞机结构静强度试验支持方案的确定[J].航空科学技术,2012(5):32-35.
LIU Quan-liang, YIN Wei, XIA Feng. The determination of support scheme for aircraft static strength verification test[J]. Aeronautical Science and Technology, 2012(5): 32-35.(in Chinese)
[50] 刘 玮,滕 青,刘 冰.基于地板结构的机身双层双向加载技术[J].航空学报,2018,39(5):136-143.
LIU Wei, TENG Qing, LIU Bing. Double-deck bi-directional loading technology based on airliner cabin floor structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 136-143.(in Chinese)
[51] LOKOS W, OLNEY C, CHEN T, et al. Strain-gage loads
calibration testing of the active aeroelastic wing F/A-18 aircraft[C]∥ American Institute of Aeronautics and Astronautics. 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: American Institute of Aeronautics and Astronautics, 2002: 210726.
[52] 郭 琼,郑建军,刘 玮.大型客机机翼“双梁”式胶布带轻量模块化加载技术[J].工程与试验,2020,60(1):12-13,23.
GUO Qiong, ZHENG Jian-jun, LIU Wei. Light weight modular loading technology of double-beam loading tape on the wing for large airliner[J]. Engineering and Test, 2020, 60(1): 12-13, 23.(in Chinese)
[53] HAND M M, SIMMS D A, FINGERSH L J, et al. Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns[R]. Colorado: National Renewable Energy Laboratory, 2001.
[54] 奚 鹰,高立强,王国华,等.基于CFD空气动力制动风载荷试验台仿真设计[J].机械设计,2015,32(9):12-18.
XI Ying, GAO Li-qiang, WANG Guo-hua, et al. Simulation design on the aerodynamic wind load test bed based on CFD[J]. Journal of Machine Design, 2015, 32(9): 12-18.(in Chinese)
[55] 武存浩,杨嘉陵,臧曙光,等.鸟撞高速摄影试验与过程研究[J].北京航空航天大学学报,2001,27(3):332-335.
WU Cun-hao, YANG Jia-ling, ZANG Shu-guang, et al. Study of bird impact loading model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(3): 332-335.(in Chinese)