[1] LEI Qian, XIAO Zhu, HU Wei-ping, et al. Phase
transformation behaviors and properties of a high strength Cu-Ni-Si alloy[J]. Materials Science and Engineering: A, 2017, 697: 37-47.
[2] MONZEN R, WATANABE C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering: A, 2008, 483/484: 117-119.
[3] LOCKYER S A, NOBLE F W. Fatigue of precipitate
strengthened Cu-Ni-Si alloy[J]. Materials Science and Technology, 1999, 15(10): 1147-1153.
[4] LEI Qian, LI Zhou, HAN Liang, et al. Effect of aging time on the corrosion behavior of a Cu-Ni-Si alloy in 3.5 wt% NaCl solution[J]. Corrosion Houston Tx, 2016, 72(5): 615-627.
[5] TANG Xing-ying, WANG Shu-zhong, QIAN Li-li, et al.
Corrosion behavior of nickel base alloys, stainless steel and titanium alloy in supercritical water containing chloride, phosphate and oxygen[J]. Chemical Engineering Research and Design, 2015, 100: 530-541.
[6] ZHAO X H, HAN Y, BAI Z Q, et al. The experiment
research of corrosion behaviour about Ni-based alloys in simulant solution containing H2S/CO2[J]. Electrochimica Acta, 2011, 56(22): 7725-7731.
[7] 杨留有,邵建方,杨庆和.关于高铁接触网定位线夹脱落问题的分析及建议[J].铁道机车车辆,2014,34(3):141-144.
YANG Liu-you, SHAO Jian-fang, YANG Qing-he. Analysis and recommendations for high-speed rail catenary positioning clamp shedding problem[J]. Railway Locomotive and CAR, 2014, 34(3): 141-144.(in Chinese)
[8] GUCHOWSKI W, RDZAWSKI Z, SOBOTA J, et al.
Effect of the combined heat treatment and severe plastc deformation on the microstructure of CuNiSi alloy[J]. Archives of Metallurgy and Materials, 2016, 61(2): 1207-1214.
[9] LEI Qian, LI Zhou, GAO Yang, et al. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes[J]. Journal of Alloys and Compounds, 2017, 695: 2413-2423.
[10] TAN De-qiang, MO Ji-liang, PENG Jin-fang, et al. Research and prospect on high-speed catenary component failure[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 610-619.
[11] ATAPEK S H, PANTELAKIS S G, POLAT S. Fractographical analysis of fatigue failed Cu-2.55Ni-0.55Si alloy[J]. Theoretical and Applied Fracture Mechanics, 2016, 83: 60-66.
[12] SUN Z, LAITEM C, VINCENT A. Dynamic embrittlement during fatigue of a Cu-Ni-Si alloy[J]. Materials Science and Engineering: A, 2011, 528(19/20): 6334-6337.
[13] LOCKYER S A, NOBLE F W. Fatigue of precipitate
strengthened Cu-Ni-Si alloy[J]. Materials Science and Technology, 1999, 15(10): 1147-1153.
[14] GOTO M, HAN S Z, LIM S H, et al. Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2016, 87: 15-21.
[15] DELBOVE M, VOGT J B, BOUQUEREL J, et al. Low cycle fatigue behaviour of a precipitation hardened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2016, 92: 313-320.
[16] 王华强,吴明泽,张继旺,等.预冷变形对Cu-Ni-Si铜合金疲劳性能和破坏行为影响研究[J].实验力学,2018,33(6):877-884.
WANG Hua-qiang, WU Ming-ze, ZHANG Ji-wang, et al. On the effect of precooling deformation on fatigue performance and failure behavior of Cu-Ni-Si alloy[J]. Journal of Experimental Mechanics, 2018, 33(6): 877-884.(in Chinese)
[17] YANG Bing, WU Ming-ze, LI Xing, et al. Effects of cold working and corrosion on fatigue properties and fracture behaviors of precipitate strengthened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2018, 116: 118-127.
[18] ZHANG Ji-wang, LI Xing, YANG Bing, et al. Effect of
micro-shot peening on fatigue properties of precipitate strengthened Cu-Ni-Si alloy in air and in salt atmosphere[J]. Surface and Coatings Technology, 2019, 359: 16-23.
[19] 刘宇轩,吴圣川,李存海,等.轴箱内置型铁路车轴疲劳性能与寿命评估[J].交通运输工程学报,2019,19(3):100-108.
LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, et al. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108.(in Chinese)
[20] QIN Ya-hang, YANG Bing, FENG Bo, et al. Effect of
periodic overloads on short fatigue crack behavior in CuNi2Si alloy under rotating bending load[J]. Metals—Open Access Metallurgy Journal, 2020, 10(9): 1267.
[21] YANG Bing, LI Yi-fan, QIN Ya-hang, et al. Fatigue crack growth behavior of precipitate-strengthened CuNi2Si alloy under different loading modes[J]. Materials, 2020, 2228(13): 1-14.
[22] PANG H T, REED P A S. Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy[J]. International Journal of Fatigue, 2008, 30(10/11): 2009-2020.
[23] YANG Bing, ZHAO Yong-xiang. Experimental research on dominant effective short fatigue crack behavior for railway LZ50 axle steel[J]. International Journal of Fatigue, 2012, 35(1): 71-78.
[24] 杨 冰,廖 贞,马佰全,等.两种加载频率下LZ50车轴钢疲劳短裂纹行为对比[J].交通运输工程学报,2017,17(6):46-55.
YANG Bing, LIAO Zhen, MA Bai-quan, et al. Comparison of short fatigue crack behaviors for LZ50 axle steel under two loading frequencies[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 46-55.(in Chinese)
[25] ZHAO Yong-xiang, YANG Bing, ZHANG Wei-hua. A short fatigue crack growth law for 1Cr18Ni9Ti weld metal[J]. Key Engineering Materials, 2006, 324/325: 571-578.
[26] 张继旺,鲁连涛,张卫华.微粒子喷丸中碳钢疲劳性能分析[J].金属学报,2009,45(11):1378-1383.
ZHANG Ji-wang, LU Lian-tao, ZHANG Wei-hua. Analysis on fatigue property of microshot peened medium carbon steel[J]. Acta Metallurgica Sinica, 2009, 45(11): 1378-1383.(in Chinese)
[27] DENG Guo-jian, TU Shan-tung, ZHANG Xian-cheng, et al. Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[J]. Engineering Fracture Mechanics, 2015, 134: 433-450.
[28] MURAKAMI Y, ENDO M. Effects of defects, inclusions
and inhomogeneities on fatigue strength[J]. International Journal of Fatigue, 1994, 16(3): 163-182.
[29] LORENZINO P, BUFFIERE J Y, VERDU C. 3D characterization of the propagation of small fatigue cracks in steels with different forging conditions[J]. International Journal of Fatigue, 2018, 115: 2-10.
[30] ZHANG Ji-wang, LI Hang, YANG Bing, et al. Fatigue
properties and fatigue strength evaluation of railway axle steel: effect of micro-shot peening and artificial defect[J]. International Journal of Fatigue, 2020, 132: 105379.