[1] GARLOCK M, PAYA-ZAFORTEZA I, KODUR V K, et al. Fire hazard in bridges: review, assessment and repair strategies[J]. Engineering Structures, 2012, 35: 89-98.
[2] SONG Chao-jie, ZHANG Gang, HOU Wei, et al. Performance of prestressed concrete box bridge girders under hydrocarbon fire exposure[J]. Advances in Structural Engineering, 2020, 23(8): 1521-1533.
[3] PERIS-SAYOL G, PAYA-ZAFORTEZA I, ALOS-MOYA J, et al. Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios[J]. Computers and Structures, 2015, 158: 333-345.
[4] 张 岗,贺拴海,侯 炜,等.预应力混凝土桥梁抗火研究综述[J].长安大学学报(自然科学版),2018,38(6):1-10.
ZHANG Gang, HE Shuan-hai, HOU Wei, et al. Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(6): 1-10.(in Chinese)
[5] 李国强,王卫永.钢结构抗火安全研究现状与发展趋势[J].土木工程学报,2017,50(12):1-8.
LI Guo-qiang, WANG Wei-yong. State-of-the-art and development trend of fire safety research on steel structures[J]. China Civil Engineering Journal, 2017, 50(12): 1-8.(in Chinese)
[6] 秦智源,张 岗,王高峰,等.油罐车火灾下钢-混组合连续箱梁性能及失效机理研究[J].长安大学学报(自然科学版),2018,38(6):98-108.
QIN Zhi-yuan, ZHANG Gang, WANG Gao-feng, et al. Performance failure of steel-concrete composite continuous box girder exposed to tanker fire[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(6): 98-108.(in Chinese)
[7] 张 岗,宗如欢,黄 侨,等.油罐车火灾致简支钢-混组合箱梁抗弯承载力衰变机理[J].长安大学学报(自然科学版),2018,38(6):31-39.
ZHANG Gang, ZONG Ru-huan, HUANG Qiao, et al. Degradation mechanism of simply supported steel-concrete composite box girder under tanker fire condition[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(6): 31-39.(in Chinese)
[8] 宋超杰,张 岗,秦智源,等.钢板组合连续桥梁的耐火极限[J].长安大学学报(自然科学版),2019,39(6):89-98.
SONG Chao-jie, ZHANG Gang, QIN Zhi-yuan, et al. Fire resistance of steel-concrete composite continuous bridge girder[J]. Journal of Chang'an University(Natural Science Edition), 2019, 39(6): 89-98.(in Chinese)
[9] 康俊涛,王 伟.火灾下大跨度钢桁架拱桥结构性能分析[J].哈尔滨工业大学学报,2020,52(9):77-84.
KANG Jun-tao, WANG Wei. Analysis of structural performance of long-span steel trussed arch bridge exposed to fire[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 77-84.(in Chinese)
[10] 陈适才,张 磊,张 洋,等.局部火灾引起的整体钢结构初始破坏机理与倒塌机制[J].建筑结构学报,2015,36(2):115-122.
CHEN Shi-cai, ZHANG Lei, ZHANG Yang, et al. Initial failure and collapse mechanism of steel frame structures under localized fire[J]. Journal of Building Structures, 2015, 36(2): 115-122.(in Chinese)
[11] NASER M Z, KODUR V K. Comparative fire behavior of
composite girders under flexural and shear loading[J]. Thin-Walled Structures, 2017, 116: 82-90.
[12] ALOS-MOYA J, PAYA-ZAFORTEZA I, HOSPITALER A, et al. Valencia bridge fire tests: experimental study of a composite bridge under fire[J]. Journal of Constructional Steel Research, 2017, 138: 538-554.
[13] AZIZ E M, KODUR V K, GLASSMAN J D, et al. Behavior of steel bridge girders under fire conditions[J]. Journal of Constructional Steel Research, 2015, 106: 11-22.
[14] QUIEL S E, YOKOYAMA T, BREGMAN L S, et al. A streamlined framework for calculating the response of steel-supported bridges to open-air tanker truck fires[J]. Fire Safety Journal, 2015, 73: 63-75.
[15] ALOS-MOYA J, PAYA-ZAFORTEZA I, GARLOCK M E M, et al. Analysis of a bridge failure due to fire using computational fluid dynamics and finite element models[J]. Engineering Structures, 2014, 68: 96-110.
[16] ZHANG Gang, KODUR V K, SONG Chao-jie, et al. A numerical model for evaluating fire performance of composite box bridge girders[J]. Journal of Constructional Steel Research, 2020, 165: 105823.
[17] NAHID M N, SOTELINO E D, LATTIMER B Y. Thermo-structural response of highway bridge structures with tub girders and plate girders[J]. Journal of Bridge Engineering, 2017, 22(10): 04017069.
[18] HOZJAN T, SAJE M, SRP I S, et al. Fire analysis of steel-concrete composite beam with interlayer slip[J]. Computers and Structures, 2011, 89(1/2): 189-200.
[19] HU Jia-yu, USMANI A, SANAD A, et al. Fire resistance of composite steel and concrete highway bridges[J]. Journal of Constructional Steel Research, 2018, 148: 707-719.
[20] 周焕廷,郑志远,郝聪龙,等.预应力连续钢-混组合梁抗火性能[J].长安大学学报(自然科学版),2018,38(6):40-48.
ZHOU Huan-ting, ZHENG Zhi-yuan, HAO Cong-long, et al. Fire resistance of prestressed continuous steel-concrete composite beams[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(6): 40-48.(in Chinese)
[21] 周焕廷,聂河斌,张 健,等.预应力简支钢梁高温性能试验研究[J].中国公路学报,2016,29(8):59-66.
ZHOU Huan-ting, NIE He-bin, ZHNAG Jian, et al. Experimental study on performance of simply supported prestressed steel beams at high temperature[J]. China Journal of Highway and Transport, 2016, 29(8): 59-66.(in Chinese)
[22] 蒋 翔,童根树,张 磊.耐火钢-混凝土简支组合梁抗火性能[J].哈尔滨工业大学学报,2017,49(12):68-74.
JIANG Xiang, TONG Gen-shu, ZHNAG Lei. Fire-resistance performance of simply supported fire-resistant steel-concrete composite beams[J]. Journal of Harbin Institute of Technology, 2017, 49(12): 68-74.(in Chinese)
[23] ALBERO V, SAURA H, HOSPITALER A, et al. Optimal design of prestressed concrete hollow core slabs taking into account its fire resistance[J]. Advances in Engineering Software, 2018, 122: 81-92.
[24] KODUR V K, AZIZ E M, NASER M Z. Strategies for
enhancing fire performance of steel bridges[J]. Engineering Structures, 2017, 131: 446-458.
[25] KODUR V K, NASER M Z. Designing steel bridges for fire safety[J]. Journal of Constructional Steel Research, 2019, 156: 46-53.
[26] DU Yong, SUN Ya-kai, JIANG Jian, et al. Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire[J]. Fire Safety Journal, 2019, 104: 79-89.
[27] KOTSOVINOS P, ATALIOTI A, MCSWINEY N, et al. Analysis of the thermomechanical response of structural cables subject to fire[J]. Fire Technology, 2020, 56(2): 515-543.
[28] 刘永健,刘 江.钢-混凝土组合梁桥温度作用与效应综述[J].交通运输工程学报,2020,20(1):42-59.
LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59.(in Chinese)
[29] BS EN 1991-1-2, Eurocode 1—actions on structures—part 1-2: general actions—actions on structures exposed to fire[S].
[30] BS EN 1994-1-2, Eurocode 4—design of composite steel and concrete structures—part 1-2: general rules—structural fire design[S].
[31] WEI Ya, AU F T K, LI Jing, et al. Effects of transient creep strain on post-tensioned concrete slabs in fire[J]. Magazine of Concrete Research, 2017, 69(7): 337-346.