|Table of Contents|

Calculation method of UHPC local compressive bearing capacity(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2021年04期
Page:
116-129
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Calculation method of UHPC local compressive bearing capacity
Author(s):
QIU Ming-hong12 SHAO Xu-dong12 LIU Qiong-wei12 YAN Ban-fu12 LI Pan-pan12 HUANG Zhong-lin12
(1. College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. Key laboratory of Wind and Bridge Engineering of Hunan Province, Hunan University, Changsha 410082, Hunan, China)
Keywords:
bridge engineering local compressive bearing capacity test database ultra-high performance concrete calculation formula correction factor
PACS:
U442.5
DOI:
10.19818/j.cnki.1671-1637.2021.04.008
Abstract:
To reasonably calculate the local compressive bearing capacity of UHPC members, the local compression test database of UHPCs with and without indirect reinforcement was developed. Based on the database, the calculation formulae of local compressive bearing capacity in codes of NF P 18-710, CECS 38: 2004, DBJ 43/T 325—2017, and JTG 3362—2018 were analyzed and evaluated. A UHPC local compression correction factor and an indirect reinforcement influence factor were proposed to analyze the effects of concrete strength and steel fibers used in the UHPC local compression test database. Subsequently, the local compressive bearing capacity calculation formula in JTG 3362—2018 was modified. Research results indicate that the average ratios of experimental local compressive bearing capacities of UHPCs without indirect reinforcement to the calculated values by UHPC codes of NF P 18-710, CECS 38: 2004, DBJ 43/T 325—2017, and JTG 3362—2018 are 0.97, 0.81, 1.33, and 1.09, respectively. The average ratios of experimental local compressive bearing capacities of UHPCs with indirect reinforcement to the calculated values by CECS 38: 2004, DBJ 43/T 325—2017, and JTG 3362—2018 are 0.91, 1.31, and 1.13, respectively. Therefore, the calculation formulae of concrete local compressive bearing capacity in different codes do not completely reflect the influences of concrete compressive strength and steel fibers. Similarly, the local compressive bearing capacity calculation formulae of indirect reinforcement do not completely reflect the effects of constrained area ratio, concrete compressive strength, and steel fibers. NF P 18-710 can better predict the local compressive bearing capacity of UHPC without indirect reinforcement. CECS 38: 2004 overestimates the local compressive bearing capacity of UHPC, thereby diverging the estimated bearing capacity of indirect reinforcement. As for DBJ 43/T 325—2017 and JTG 3362—2018, their calculation results are relatively conservative. The average ratios of the experimental local compressive bearing capacities to the predicted values by the modified JTG 3362—2018 formula are 1.00 and 1.04 for UHPCs with and without indirect reinforcement, respectively, and the standard deviations in both cases are less than 0.20. Therefore, the modified formula inJTG 3362—2018 can better predict the local compressive capacities of UHPCs with and without indirect reinforcement, and thus it can provide a reference for the design specifications of domestic UHPC bridge structures. 1 tab, 13 figs, 31 refs.

References:

[1] 邵旭东,邱明红,晏班夫,等.超高性能混凝土在国内外桥梁工程中的研究与应用进展[J].材料导报,2017,31(12):33-43.
SHAO Xu-dong, QIU Ming-hong, YAN Ban-fu, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Material Reports, 2017, 31(12): 33-43.(in Chinese)
[2] 邵旭东,邱明红.基于UHPC材料的高性能装配式桥梁结构研发[J].西安建筑科技大学学报(自然科学版),2019,51(2):160-167.
SHAO Xu-dong, QIU Ming-hong. Research on high performance fabricated bridge structures based on UHPC[J]. Journal of Xi'an University of Architecture and Technology(Natural Science Edition), 2019, 51(2): 160-167.(in Chinese)
[3] 邵旭东,曹君辉.面向未来的高性能桥梁结构研发与应用[J].建筑科学与工程学报,2017,34(5):41-58.
SHAO Xu-dong, CAO Jun-hui. Research and application of high performance bridge structures toward future[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 41-58.(in Chinese)
[4] 邵旭东,樊 伟,黄政宇.超高性能混凝土在结构中的应用[J].土木工程学报,2021,54(1):1-13.
SHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13.(in Chinese)
[5] 邵旭东,詹 豪,雷 薇,等.超大跨径单向预应力UHPC连续箱梁桥概念设计与初步实验[J].土木工程学报,2013,46(8):83-89.
SHAO Xu-dong, ZHAN Hao, LEI Wei, et al. Conceptual design and preliminary experiment of super-long-span continuous box-girder bridge composed of one-way prestressed UHPC[J]. China Civil Engineering Journal, 2013, 46(8): 83-89.(in Chinese)
[6] 邱明红,邵旭东,甘屹东,等.单向预应力UHPC连续箱梁桥面体系优化设计研究[J].土木工程学报,2017,50(11):87-97.
QIU Ming-hong, SHAO Xu-dong, GAN Yi-dong, et al. Research on optimal design of deck system in longitudinal prestressed UHPC continuous box girder bridge[J]. China Civil Engineering Journal, 2017, 50(11): 87-97.(in Chinese)
[7] 邵旭东,张 良,张松涛,等.新型UHPC连续箱梁桥的体外预应力锚固构造形式研究[J].湖南大学学报(自然科学版),2016,43(3):1-7.
SHAO Xu-dong, ZHANG Liang, ZHANG Song-tao, et al. Study on structural forms of external prestressing anchorage for a novel continuous UHPC box-girder bridge[J]. Journal of Hunan University(Natural Sciences), 2016, 43(3): 1-7.(in Chinese)
[8] 冯 峥,李传习,潘仁胜,等.密集横隔板UHPC箱梁锚固区局部承压性能研究[J].工程力学,2020,37(5):94-103,119.
FENG Zheng, LI Chuan-xi, PAN Ren-sheng, et al. Study on local compressive performance for anchorage zone of UHPC box-girder with densely distributed diaphragms[J]. Engineering Mechanics, 2020, 37(5): 94-103, 119.(in Chinese)
[9] 李传习,冯 峥,郭立成,等.密集横隔板UHPC箱梁锚固区局部效应分析及配筋设计[J].公路交通科技,2020,37(5):53-63.
LI Chuan-xi, FENG Zheng, GUO Li-cheng, et al. Local effect analysis and reinforcement design for anchorage zone of UHPC box girder with densely distributed diaphragms[J]. Journal of Highway and Transportation Research and Development, 2020, 37(5): 53-63.(in Chinese)
[10] 蔡绍怀.混凝土及配筋混凝土的局部承压强度[J].土木工程学报,1963,9(6):1-10.
CAI Shao-huai. Local compressive strength of concrete and reinforced concrete[J]. China Civil Engineering Journal, 1963, 9(6): 1-10.(in Chinese)
[11] 刘永颐,曹声远,杨熙坤,等.混凝土及钢筋混凝土的局部承压问题[J].建筑结构,1982(4):1-9.
LIU Yong-yi, CAO Sheng-yuan, YANG Xi-kun, et al. Local pressure problems in concrete and reinforced concrete[J]. Building Structure, 1982(4): 1-9.(in Chinese)
[12] 曹声远,杨熙坤,徐凯怡.钢筋混凝土局部承压的试验研究[J].哈尔滨建筑工程学院学报,1983(2):1-22.
CAO Sheng-yuan, YANG Xi-kun, XU Kai-yi. Experimental research on local compression of reinforced concrete[J]. Journal of Harbin University of Civil Engineering and Architecture, 1983(2): 1-22.(in Chinese)
[13] 曹声远,杨熙坤,徐凯恰.钢筋混凝土局部承压的工作机理[J].哈尔滨建筑工程学院学报,1984(1):1-8.
CAO Sheng-yuan, YANG Xi-kun, XU Kai-yi. The working mechanism of local compression of reinforced concrete[J]. Journal of Harbin University of Civil Engineering and Architecture, 1984(1): 1-8.(in Chinese)
[14] 曹声远,杨熙坤,徐凯怡.钢筋混凝土局部承压强度理论[J].哈尔滨建筑工程学院学报,1984(2):25-33.
CAO Sheng-yuan, YANG Xi-kun, XU Kai-yi. Theory of local compressive strength of reinforced concrete[J]. Journal of Harbin University of Civil Engineering and Architecture, 1984(2): 25-33.(in Chinese)
[15] 刘永颐,关建光,王传志.混凝土局部承压强度及破坏机理[J].土木工程学报,1985,18(2):53-65.
LIU Yong-yi, GUAN Jian-guang, WANG Chuan-zhi. Bearing strength of concrete and its failure mechanism[J]. China Civil Engineering Journal, 1985, 18(2): 53-65.(in Chinese)
[16] 杨 波,赵景海,樊承谋.钢纤维混凝土局部承压的试验研究[J].哈尔滨建筑工程学院学报,1994(2):84-89.
YANG Bo, ZHAO Jing-hai, FAN Cheng-mou. Experimental research on the steel fiber reinforced concrete with partial pressure[J]. Journal of Harbin University of Civil Engineering and Architecture, 1994(2): 84-89.(in Chinese)
[17] 赵景海,邙静喆.钢纤维混凝土局部受压试验研究[J].河南科学,2002,20(6):702-704.
ZHAO Jing-hai, MANG Jing-zhe. Experimental research on steel fiber concrete subjected local loading[J]. Henan Science, 2002, 20(6): 702-704.(in Chinese)
[18] 范征宇,邙静喆,赵景海.CF60钢纤维混凝土局部受压的试验研究[J].低温建筑技术,2003(1):36-37.
FAN Zheng-yu, MANG Jing-zhe, ZHAO Jing-hai. Experimental research on partial compression of CF60 steel fiber concrete[J]. Low Temperature Architecture Technology, 2003(1): 36-37.(in Chinese)
[19] 郑文忠,赵军卫,张博一.活性粉末混凝土局压承载力试验与分析[J].南京理工大学学报(自然科学版),2008,32(3):381-386.
ZHENG Wen-zhong, ZHAO Jun-wei, ZHANG Bo-yi. Experiment and analysis of local compression bearing capacity of reactive powder concrete[J]. Journal of Nanjing University of Science and Technology(Natural Science), 2008, 32(3): 381-386.(in Chinese)
[20] 张利娜,巴 方,张 伟.活性粉末混凝土局部抗压性能试验研究[J].工业建筑,2009,39(增1):939-942.
ZHANG Li-na, BA Fang, ZHANG Wei. The test study on local compressive performance of RPC[J]. Industrial Construction, 2009, 39(S1): 939-942.(in Chinese)
[21] 周 威,郑文忠,胡海波.钢筋网片约束活性粉末混凝土局压性能试验研究[J].建筑结构学报,2013,34(11):141-150.
ZHOU Wei, ZHENG Wen-zhong, HU Hai-bo. Bearing capacity of reactive powder concrete reinforced by orthogonal ties[J]. Journal of Building Structures, 2013, 34(11): 141-150.(in Chinese)
[22] 周 威,胡海波,郑文忠.高强螺旋筋约束活性粉末混凝土局压承载力试验[J].土木工程学报,2014,47(8):63-72.
ZHOU Wei, HU Hai-bo, ZHENG Wen-zhong. Bearing capacity of reactive powder concrete reinforced by high-strength steel spirals[J]. China Civil Engineering Journal, 2014, 47(8): 63-72.(in Chinese)
[23] 周 威,胡海波.预留孔道活性粉末混凝土局压性能与承载力分析[J].工程力学,2014,31(7):119-128.
ZHOU Wei, HU Hai-bo. Analysis on bearing capacity and behavior of reactive powder concrete with empty concentric duct under local pressure[J]. Engineering Mechanics, 2014, 31(7): 119-128.(in Chinese)
[24] ZHOU Wei, HU Hai-bo, ZHENG Wen-zhong. Bearing capacity of reactive powder concrete reinforced by steel fibers[J]. Construction and Building Materials, 2013, 48: 1179-1186.
[25] 李文全.活性粉末混凝土预应力锚固区局压性能研究[D].长沙:湖南大学,2017.
LI Wen-quan. Performance study on the local compression of reactive powder concrete under anchorages[D]. Changsha: Hunan University, 2017.(in Chinese)
[26] BOULAY C, TOUTLEMONDE F, CLE'ENT J L, et al.
Safety of VHSC structures under concentrated loading: experimental approach[J]. Magazine of Concrete Research, 2004, 56(9): 523-535.
[27] CHOI E S, LEE J W, JOH C B, et al. A local compression tests of UHPC anchor blocks for post-tensioning tendons[J]. Key Engineering Materials, 2012, 525/526: 561-564.
[28] KIM J S, JOH C B, CHOI Y S, et al. Load transfer test of post-tensioned anchorage zone in ultra high performance concrete[J]. Engineering, 2015, 7(3): 115-128.
[29] KIM J H, KWAK H G, KIM B S, et al. Finite element analyses and design of post-tensioned anchorage zone in ultra-high-performance concrete beams[J]. Advances in Structural Engineering, 2019, 22(2): 323-336.
[30] NF P 18-710, national addition to Eurocode 2—design of
concrete structures: specific rules for ultra-high performance fibre-reinforced concrete(UHPFRC)[S].
[31] 郑文忠,吕雪源.活性粉末混凝土研究进展[J].建筑结构学报,2015,36(10):45-58.
ZHENG Wen-zhong, LYU Xue-yuan. Literature review of reactive powder concrete[J]. Journal of Building Structures, 2015, 36(10): 44-58.(in Chinese)

Memo

Memo:
-
Last Update: 2021-09-01