[1] 周飞燕,金林鹏,董 军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
ZHOU Fei-yan, JIN Lin-peng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.(in Chinese)
[2] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943, 5: 115-133.
[3] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386-408.
[4] WIDROW B, HOFF M E. Associative storage and retrieval of digital information in networks of adaptive “neurons”[J]. Biological Prototypes and Synthetic Systems, 1962: 160-166.
[5] MINSKY M L, PAPERT S A. Perceptrons[M]. Cambridge: MIT Press, 1969.
[6] KOHONEN T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43: 59-69.
[7] CARPENTER G A, GROSSBERG S. The ART of adaptive pattern recognition by a self-organizing neural network[J]. IEEE Computer, 1988, 21(3): 77-88.
[8] HOPFIELD J J. Neural networks and physical systems with
emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558.
[9] HOPFIELD J J. Neurons with graded response have
collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088-3092.
[10] HOPFIELD J J, TANK D W. “Neural” computation of
decisions in optimization problems[J]. Biological Cybernetics, 1985, 52: 141-152.
[11] HOPFIELD J J, TANK D. Computing with neural circuits: a model[J]. Science, 1986, 233(4764): 625-633.
[12] HINTON G E, SEJNOWSKI T J. Optimal perceptual
inference[C]∥IEEE. 2007 IEEE International Conference on Image Processing. New York: IEEE, 1983: 448-453.
[13] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
[14] HINTON G E, SALAKHUTDINOV R R. Reducing the
dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[15] BENGIO Y, LAMBLIN P, DAN P, et al. Greedy layer-wise
training of deep networks[C]∥NeurIPS. 20th Annual Conference on Neural Information Processing Systems. San Diego: NeurIPS, 2006: 153-160.
[16] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408.
[17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[18] 张晓男,钟 兴,朱瑞飞,等.基于集成卷积神经网络的遥感影像场景分类[J].光学学报,2018,38(11):1128001.
ZHANG Xiao-nan, ZHONG Xing, ZHU Rui-fei, et al. Scene classification of remote sensing images based on integrated convolutional neural networks[J]. Acta Optica Sinica, 2018, 38(11): 1128001.(in Chinese)
[19] LECUN Y L, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[20] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a
large-scale hierarchical image database[C]∥IEEE. 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2009: 248-255.
[21] HUBEL D H, WIESEL T N. Receptive fields binocular
interaction and functional architecture in the cat's visual cortex[J]. Journal of Physiology, 1962, 160: 106-154.
[22] FUKUSHIMA K. Neocognitron: a self- organizing neural
network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36: 193-202.
[23] ZEILER M D, FERGUS R. Visualizing and understanding
convolutional networks[C]∥Springer. 13th European Conference on Computer Vision. Berlin: Springer, 2014: 818-833.
[24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]∥ICLR. 3rd International Conference on Learning Representations. La Jolla: ICLR, 2015: 1-14.
[25] SZEGEDY C, LIU Wei, JIA Yang-qing, et al. Going deeper with convolutions[C]∥IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
[26] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al.
Deep residual learning for image recognition[C]∥IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
[27] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]∥IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 2261-2269.
[28] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]∥ICML. 32nd International Conference on Machine Learning. San Diego: ICML, 2015: 448-456.
[29] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]∥IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2818-2826.
[30] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-4, inception-ResNet and the impact of residual connections on learning[C]∥AAAI. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 4278-4284.
[31] DAI Ji-feng, QI Hao-zhi, XIONG Yue-wen, et al. Deformable convolutional networks[C]∥IEEE. 2017 IEEE International Conference on Computer Vision. New York: IEEE, 2017: 764-773.
[32] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[33] CHOLLET F. Xception: deep learning with depthwise
separable convolutions[C]∥IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 1800-1807.
[34] ZHANG Xiang-yu, ZHOU Xin-yu, LIN Meng-xiao, et al.
ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]∥IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 6848-6856.
[35] HU Jie, SHEN Lin, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[36] 高 鑫,李 慧,张 义,等.基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J].电子与信息学报,2018,40(12):2812-2819.
GAO Xin, LI Hui, ZHANG Yi, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics and Information Technology, 2018, 40(12): 2812-2819.(in Chinese)
[37] YU F, KOLTUN V. Multi-scale context aggregation by
dilated convolutions[C]∥ICLR. 4th International Conference on Learning Representations. La Jolla: ICLR, 2016: 1-13.
[38] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]∥ICLR. 3rd International Conference on Learning Representations. La Jolla: ICLR, 2015: 1-14.
[39] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[40] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. ArXiv E-Print, 2017, DOI: arXiv:1706.05587.
[41] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]∥Springer. 15th European Conference on Computer Vision. Berlin: Springer, 2018: 833-851.
[42] KAIMING H, GEORGIA G, PIOTR D, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
[43] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:
towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[44] LIU Shu, QI Lu, QIN Hai-fang, et al. Path aggregation
network for instance segmentation[C]∥IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 8759-8768.
[45] HUANG Zhao-jin, HUANG Li-chao, GONG Yong-chao, et al. Mask scoring R-CNN[C]∥IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 6402-6411.
[46] SARIGUL M, OZYILDIRIM B M, AVCI M. Differential
convolutional neural network[J]. Neural Networks, 2019, 116: 279-287.
[47] ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[C]∥ICLR. 1st International Conference on Learning Representations. La Jolla: ICLR, 2013: 1-9.
[48] FEI Jian-chao, FANG Hu-sheng, YIN Qin, et al. Restricted stochastic pooling for convolutional neural network[C]∥ACM. 10th International Conference on Internet Multimedia Computing and Service. New York: ACM, 2018: 1-4.
[49] AKHTAR N, RAGAVENDRAN U. Interpretation of
intelligence in CNN-pooling processes: a methodological survey[J]. Neural Computing and Application, 2020, 32(3): 879-898.
[50] YU D, WANG H, CHEN P, et al. Mixed pooling for
convolutional neural networks[C]∥Springer. 9th International Conference on Rough Sets and Knowledge Technology. Berlin: Springer, 2014: 364-375.
[51] LIN Min, CHEN Qiang, YAN Shui-cheng. Network in
network[C]∥ICLR. 2nd International Conference on Learning Representations. La Jolla: ICLR, 2014: 1-10.
[52] SUN Man-li, SONG Zhan-jie, JIANG Xiao-heng, et al.
Learning pooling for convolutional neural network[J]. Neurocomputing, 2017, 224: 96-104.
[53] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al.
Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[54] CUI Yin, ZHOU Feng, WANG Jiang, et al. Kernel pooling for convolutional neural networks[C]∥IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 3049-3058.
[55] CHEN Jun-feng, HUA Zhou-dong, WANG Jing-yu, et al. A convolutional neural network with dynamic correlation pooling[C]∥IEEE. 13th International Conference on Computational Intelligence and Security(CIS). New York: IEEE, 2017: 496-499.
[56] ZHAO Qi, LYU Shu-chang, ZHANG Bo-xue, et al.
Multiactivation pooling method in convolutional neural networks for image recognition[J]. Wireless Communications and Mobile Computing, 2018, 2018: 8196906.
[57] ZHANG Jian-ming, HUANG Qian-qian, WU Hong-lin, et al. A shallow network with combined pooling for fast traffic sign recognition[J]. Information, 2017, 8(2): 45.
[58] SAEEDAN F, WEBER N, GOESELE M, et al. Detail-
preserving pooling in deep networks[C]∥IEEE. 2018 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 9108-9116.
[59] QI Kun-lun, GUAN Qing-feng, YANG Chao, et al.
Concentric circle pooling in deep convolutional networks for remote sensing scene classification[J]. Remote Sensing, 2018, 10(6): 934.
[60] LONG Yang, ZHU Fan, SHAO Ling, et al. Face recognition with a small occluded training set using spatial and statistical pooling[J]. Information Sciences, 2018, 430/431: 634-644.
[61] WANG Feng, HUANG Si-wei, SHI Lei, et al. The application of series multi-pooling convolutional neural networks for medical image segmentation[J]. International Journal of Distributed Sensor Networks, 2017, 13(12): 1-10.
[62] ZHI Tian-cheng, DUAN Ling-yu, WANG Yi-tong, et al.
Two-stage pooling of deep convolutional features for image retrieval[C]∥IEEE. 23rd IEEE International Conference on Image Processing. New York: IEEE, 2016: 2465-2469.
[63] SADIGH S, SEN P. Improving the resolution of CNN feature maps efficiently with multisampling[J]. ArXiv E-Print, 2018, DOI: arXiv:1805.10766.
[64] TAKEKI A, IKAMI D, IRIE G, et al. Parallel grid pooling for data augmentation[J]. ArXiv E-Print, 2018, DOI: arXiv:1803.11370.
[65] SHAHRIARI A, PORIKLI F. Multipartite pooling for deep convolutional neural networks[J]. ArXiv E-Print, 2017, DOI: arXiv:1710.07435.
[66] KUMAR A. Ordinal pooling networks: for preserving
information over shrinking feature maps[J]. ArXiv E-Print, 2018, DOI: arXiv:1804.02702.
[67] KOLESNIKOV A, LAMPERT C H. Seed, expand and constrain: three principles for weakly- supervised image segmentation[C]∥Springer. 21st ACM Conference on Computer and Communications Security. Berlin: Springer, 2016: 695-711.
[68] SHI Zeng-lin, YE Yang-ding, WU Yun-peng. Rank-based
pooling for deep convolutional neural networks[J]. Neural Networks, 2016, 83: 21-31.
[69] ZHAI Shuang-fei, WU Hui, KUMAR A, et al. S3Pool:
pooling with stochastic spatial sampling[C]∥IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4003-4011.
[70] TONG Zhi-qiang, AIHARA K, TANAKA G. A hybrid
pooling method for convolutional neural networks[C]∥Springer. International Conference on Neural Information Processing. Berlin: Springer, 2016: 454-461.
[71] TURAGA S C, MURRAY J F, JAIN V, et al. Convolutional networks can learn to generate affinity graphs for image segmentation[J]. Neural Computation, 2010, 22(2): 511-538.
[72] WU Hai-bing, GU Xiao-dong. Max-pooling dropout for
regularization of convolutional neural networks[C]∥Springer. 22nd International Conference on Neural Information Processing. Berlin: Springer, 2015: 46-54.
[73] SONG Zhen-hua, LIU Yan, SONG Rong, et al. A sparsity-based stochastic pooling mechanism for deep convolutional neural networks[J]. Neural Networks, 2018, 105: 340-345.
[74] WANG P, LI W, GAO Z, et al. Depth pooling based large-scale 3D action recognition with convolutional neural networks[J]. IEEE Transactions on Multimedia, 2018, 20(5): 1051-1061.
[75] RIPPEL O, SNOEK J, ADAMS R P. Spectral representations for convolutional neural networks[C]∥NeurIPS. 29th Annual Conference on Neural Information Processing Systems. San Diego: NeurIPS, 2015: 2449-2457.
[76] WILLIAMS T, LI R. Wavelet pooling for convolutional
neural networks[C]∥ICLR. 6th International Conference on Learning Representations. La Jolla: ICLR, 2018: 1-12.
[77] SAINATH T N, KINGSBURY B, MOHAMED A R, et al. Improvements to deep convolutional neural networks for LVCSR[C]∥IEEE. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. New York: IEEE, 2013: 315-320.
[78] 白 琮,黄 玲,陈佳楠,等.面向大规模图像分类的深度卷积神经网络优化[J].软件学报,2018,29(4):1029-1038.
BAI Cong, HUANG Ling, CHEN Jia-nan, et al. Optimization of deep convolutional neural network for large scale image classification[J]. Journal of Software, 2018, 29(4): 1029-1038.(in Chinese)
[79] EOM H, CHOI H. Alpha—integration pooling for convolutional neural networks[J]. ArXiv E-Print, 2018, DOI: arXiv:1811.03436.
[80] 刘万军,梁雪剑,曲海成.不同池化模型的卷积神经网络学习性能研究[J].中国图象图形学报,2016,21(9):1178-1190.
LIU Wan-jun, LIANG Xue-jian, QU Hai-cheng. Learning performance of convolutional neural networks with different pooling models[J]. Journal of Image and Graphics, 2016, 21(9): 1178-1190.(in Chinese)
[81] ZHANG Bo-xue, ZHAO Qi, FENG Wen-quan, et al. AlphaMEX: a smarter global pooling method for convolutional neural networks[J]. Neurocomputing, 2018, 321: 36-48.
[82] JOSE A, LOPEZ R D, HEISTERKLAUS I, et al. Pyramid pooling of convolutional feature maps for image retrieval[C]∥IEEE. 25th IEEE International Conference on Image Processing. New York: IEEE, 2018: 480-484.
[83] WAIBEL A, HANAZAWA T, HINTON G, et al. Phoneme recognition using time-delay neural networks[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(3): 328-339.
[84] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[85] WANG Ze-long, LAN Qiang, HUANG Da-fei, et al.
Combining FFT and spectral-pooling for efficient convolution neural network model[C]∥Advances in Intelligent Systems Research. 2nd International Conference on Artificial Intelligence and Industrial Engineering. Paris: Atlantis Press, 2016: 203-206.
[86] SMITH J S, WILAMOWSKI B M. Discrete cosine transform spectral pooling layers for convolutional neural networks[C]∥Springer. 17th International Conference on Artificial Intelligence and Soft Computing. Berlin: Springer, 2018: 235-246.
[87] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines [C]∥ICML. 27th International Conference on Machine Learning. San Diego: ICML, 2010: 807-814.
[88] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.
[89] LI Y, DING P, LI B. Training neural networks by using
power linear units(PoLUs)[J]. ArXiv E-Print, 2018, DOI: arXiv:1802.00212.
[90] DOLEZEL P, SKRABABEK P, GAGO L. Weight initialization possibilities for feed forward neural network with linear saturated activation functions[J]. IFAC—Papers on Line, 2016, 49(25): 49-54.
[91] GOODFELLOW I J, WARDE-FARLEY D, MIRZA M, et al. Maxout networks[C]∥ICML. 30th International Conference on Machine Learning. San Diego: ICML, 2013: 2356-2364.
[92] CASTANEDA G, MORRIS P, KHOSHGOFTAAR T M. Evaluation of maxout activations in deep learning across several big data domains[J]. Journal of Big Data, 2019, DOI: 10.1186/s40537-019-0233-0.
[93] CLEVERT D A, UNTERTHINER T, HOCHREITER S.
Fast and accurate deep network learning by exponential linear units(ELUs)[C]∥ICLR. 4th International Conference on Learning Representations. La Jolla: ICLR, 2016: 1-14.
[94] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]∥ACM. 30th International Conference on Machine Learning. New York: ACM, 2013: 456-462.
[95] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]∥IEEE. 15th IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1026-1034.
[96] KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[C]∥NeurIPS. 31st Annual Conference on Neural Information Processing Systems. San Diego: NeurIPS, 2017: 972-981.
[97] 杨观赐,杨 静,李少波,等.基于Dopout与ADAM优化器的改进CNN算法[J].华中科技大学学报(自然科学版),2018,46(7):122-127.
YANG Guan-ci, YANG Jing, LI Shao-bo, et al. Modified CNN algorithm based on Dropout and ADAM optimizer[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2018, 46(7): 122-127.(in Chinese)
[98] KINGMA D P, BA J L. Adam: a method for stochastic
optimization[C]∥ICLR. 3rd International Conference on Learning Representations. La Jolla: ICLR, 2015: 1-15.
[99] ROBBINS H, MONRO S. A stochastic approximation
method[J]. The Annals of Mathematical Statistics, 1951, 22(3): 400-407.
[100] 石 琪.基于卷积神经网络图像分类优化算法的研究与验证[D].北京:北京交通大学,2017.
SHI Qi. Research and verification of image classification optimization algorithm based on convolutional neural network[D]. Beijing: Beijing Jiaotong University, 2017.(in Chinese)
[101] 王红霞,周家奇,辜承昊,等.用于图像分类的卷积神经网络中激活函数的设计[J].浙江大学学报(工学版),2019,53(7):1363-1373.
WANG Hong-xia, ZHOU Jia-qi, GU Cheng-hao, et al. Design of activation function in CNN for image classification[J]. Journal of Zhejiang University(Engineering Science), 2019, 53(7): 1363-1373.(in Chinese)
[102] POLYAK B T. Some methods of speeding up the
convergence of iteration methods[J]. USSR Computational Mathematics and Mathematical Physics, 1964, 4(5): 1-17.
[103] SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]∥ACM. 30th International Conference on Machine Learning. New York: ACM, 2013: 2176-2184.
[104] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159.
[105] ZEILER M D. Adadelta: an adaptive learning rate method[J]. ArXiv E-Print, 2012, DOI: arXiv:1212.5701.
[106] JI Shi-hao, VISHWANATHAN S V N, SATISH N, et al. BlackOut: speeding up recurrent neural network language models with very large vocabularies[C]∥ICLR. 4th International Conference on Learning Representations. La Jolla: ICLR, 2016: 1-4.
[107] LOUIZOS C, WELLING M, KINGMA D P. Learning
sparse neural networks through L0 regularization[C]∥ICLR. 6th International Conference on Learning Representations. La Jolla: ICLR, 2018: 1-13.
[108] DOZAT T. Incorporating nesterov momentum into adam[C]∥ICLR. 4th International Conference on Learning Representations. La Jolla: ICLR, 2016: 1-4.
[109] LUO Liang-chao, XIONG Yuan-hao, LIU Yan, et al.
Adaptive gradient methods with dynamic bound of learning rate[C]∥ICLR. 7th International Conference on Learning Representations. La Jolla: ICLR, 2019: 1-19.
[110] WANG Di, TIAN Yu-min, GENG Wen-hui, et al. LPR-Net: recognizing Chinese license plate in complex environments[J]. Pattern Recognition Letters, 2020, 130: 148-156.
[111] 李祥鹏,闵卫东,韩 清,等.基于深度学习的车牌定位和识别方法[J].计算机辅助设计与图形学学报,2019,31(6):979-987.
LI Xiang-peng, MIN Wei-dong, HAN Qing, et al. License plate location and recognition based on deep learning[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(6): 979-987.(in Chinese)
[112] LIN Hui, WANG Peng, YOU Chun-hua, et al. Reading car license plates using deep neural networks[J]. Image and Vision Computing, 2018, 72: 14-23.
[113] XIANG Han, ZHAO Yong, YUAN Yu-le, et al.
Lightweight fully convolutional network for license plate detection[J]. Optik, 2019, 178: 1185-1194.
[114] ASIF M R, QI Chun, WANG Tie-xiang, et al. License plate detection for multi-national vehicles: an illumination invariant approach in multi-lane environment[J]. Computers and Electrical Engineering, 2019, 78: 132-147.
[115] PUARUNGROJ W, BOONSIRISUMPUN N. Thai license
plate recognition based on deep learning[J]. Procedia Computer Science, 2018, 135: 214-221.
[116] CAO Yu, FU Hui-yuan, MA Hua-dong. An end-to-end
neural network for multi-line license plate recognition[C]∥IEEE. 24th International Conference on Pattern Recognition. New York: IEEE, 2018: 3698-3703.
[117] 赵汉理,刘俊如,姜 磊,等.基于卷积神经网络的双行车牌分割算法[J].计算机辅助设计与图形学学报,2019,31(8):1320-1329.
ZHAO Han-li, LIU Jun-ru, JIANG Lei, et al. Double-row license plate segmentation with convolutional neural networks[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(8): 1320-1329.(in Chinese)
[118] 张秀玲,张逞逞,周凯旋.基于感兴趣区域的CNN-Squeeze交通标志图像识别[J].交通运输系统工程与信息,2019,19(3):48-53.
ZHANG Xiu-ling, ZHANG Cheng-cheng, ZHOU Kai-xuan.Traffic sign image recognition via CNN-Squeeze based on region of interest[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(3): 48-53.(in Chinese)
[119] 王方石,王 坚,李 兵,等.基于深度属性学习的交通标志检测[J].吉林大学学报(工学版),2018,48(1):319-329.
WANG Fang-shi, WANG Jian, LI Bing, et al. Deep attribute learning based traffic sign detection[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(1): 319-329.(in Chinese)
[120] 李旭东,张建明,谢志鹏,等.基于三尺度嵌套残差结构的交通标志快速检测算法[J].计算机研究与发展,2020,57(5):1022-1036.
LI Xu-dong, ZHANG Jian-ming, XIE Zhi-peng, et al. A fast traffic sign detection algorithm based on three-scale nested residual structures[J]. Journal of Computer Research and Development, 2020, 57(5): 1022-1036.(in Chinese)
[121] 宋青松,张 超,田正鑫,等.基于多尺度卷积神经网络的交通标志识别[J].湖南大学学报(自然科学版),2018,45(8):131-137.
SONG Qing-song, ZHANG Chao, TIAN Zheng-xin, et al. Traffic sign recognition based on multi-scale convolutional neural network[J]. Journal of Hunan University(Natural Sciences), 2018, 45(8): 131-137.(in Chinese)
[122] 孙 伟,杜宏吉,张小瑞,等.基于CNN多层特征和ELM的交通标志识别[J].电子科技大学学报,2018,47(3):343-349.
SUN Wei, DU Hong-ji, ZHANG Xiao-rui. et al. Traffic sign recognition method based on multi-layer feature CNN and extreme learning machine[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3): 343-349.(in Chinese)
[123] 张淑芳,朱 彤.基于残差单发多框检测器模型的交通标志检测与识别[J].浙江大学学报(工学版),2019,53(5):940-949.
ZHANG Shu-fang, ZHU Tong. Traffic sign detection and recognition based on residual single shot multibox detector model[J]. Journal of Zhejiang University(Engineering Science), 2019, 53(5): 940-949.(in Chinese)
[124] LIU Zhi-gang, LI Dong-yu, GE Shu-zhi, et al. Small traffic sign detection from large image[J]. Applied Intelligence, 2020, 50(1): 1-13.
[125] 张建明,王 伟,陆朝铨,等.基于压缩卷积神经网络的交通标志分类算法[J].华中科技大学学报(自然科学版),2019,47(1):103-108.
ZHANG Jian-ming, WANG Wei, LU Chao-quan, et al. Traffic sign classification algorithm based on compressed convolutional neural network[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(1): 103-108.(in Chinese)
[126] SONG Shi-jin, QUE Zhi-qiang, HOU Jun-jie, et al. An
efficient convolutional neural network for small traffic sign detection[J]. Journal of Systems Architecture, 2019, 97: 269-277.
[127] ZHANG Qiang, ZHOU Li, LI Jia-feng, et al. Vehicle color recognition using multiple-layer feature representations of lightweight convolutional neural network[J]. Signal Processing, 2018, 147(7): 146-153.
[128] FU Hui-yuan, MA Hua-dong, WANG Gao-ya, et al. MCFF-CNN: multiscale comprehensive feature fusion convolutional neural network for vehicle color recognition based on residual learning[J]. Neurocomputing, 2020, 395: 178-187.
[129] LI Su-hao, LIN Jin-zhao, LI Guo-quan, et al. Vehicle type detection based on deep learning in traffic scene[J]. Procedia Computer Science, 2018, 131: 564-572.
[130] HU Bin, LAI Jian-huang, GUO Chun-chao. Location-aware fine-grained vehicle type recognition using multi-task deep networks[J]. Neurocomputing, 2017, 243: 60-68.
[131] XIANG Ye, FU Ying, HUANG Hua. Global relative position space based pooling for fine-grained vehicle recognition[J]. Neurocomputing, 2019, 367: 287-298.
[132] 余 烨,傅云翔,杨昌东,等.基于FR-ResNet的车辆型号精细识别研究[J].自动化学报,2021,47(5):1125-1136.
YU Ye, FU Yun-xiang, YANG Chang-dong, et al. Fine-grained car model recognition based on FR-ResNet[J]. Acta Automatica Sinica, 2021, 47(5): 1125-1136.(in Chinese)
[133] 杨 娟,曹浩宇,汪荣贵,等.基于语义DCNN特征融合的细粒度车型识别模型[J].计算机辅助设计与图形学学报,2019,31(1):141-157.
YANG Juan, CAO Hao-yu, WANG Rong-gui, et al. Fine-grained car recognition model based on semantic DCNN features fusion[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(1): 141-157.(in Chinese)
[134] 蒋行国,万今朝,蔡晓东,等.奇异值分解与中心度量的细粒度车型识别算法[J].西安电子科技大学学报,2019,46(3):82-88.
JIANG Xing-guo, WAN Jin-zhao, CAI Xiao-dong, et al. Algorithm for identification of fine-grained vehicles based on singular value decomposition and central metric[J]. Journal of Xidian University, 2019, 46(3): 82-88.(in Chinese)
[135] 杨 娟,曹浩宇,汪荣贵,等.区域建议网络的细粒度车型识别[J].中国图象图形学报,2018,23(6):837-845.
YANG Juan, CAO Hao-yu, WANG Rong-gui, et al. Fine-grained car recognition method based on region proposal networks[J]. Journal of Image and Graphics, 2018, 23(6): 837-845.(in Chinese)
[136] 罗文慧,董宝田,王泽胜.基于CNN-SVR混合深度学习模型的短时交通流预测[J].交通运输系统工程与信息,2017,17(5):68-74.
LUO Wen-hui, DONG Bao-tian, WANG Ze-sheng. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74.(in Chinese)
[137] 石 敏,蔡少委,易清明.基于空洞-稠密网络的交通拥堵预测模型[J].上海交通大学学报,2021,55(2):124-130.
SHI Min, CAI Shao-wei, YI Qing-ming. A traffic congestion prediction model based on dilated-dense network [J]. Journal of Shanghai Jiaotong University, 2021, 55(2): 124-130.(in Chinese)
[138] DENG Shao-jiang, JIA Shu-yuan, CHEN Jing. Exploring
spatial-temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data[J]. Applied Soft Computing Journal, 2019, 78: 712-721.
[139] AN Ji-yao, FU Li, HU Meng, et al. A novel fuzzy-based
convolutional neural network method to traffic flow prediction with uncertain traffic accident information[J]. IEEE Access, 2018, 12: 2169-3536.
[140] HAN Dong-xiao, CHEN Juan, SUN Jian. A parallel
spatiotemporal deep learning network for highway traffic flow forecasting[J]. International Journal of Distributed Sensor Networks, 2019, 15(2): 1-12.
[141] ZHANG Wei-bin, YU Ying-hao, QI Yong, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportmetrica A: Transport Science, 2019, 15(2): 1688-1711.
[142] GUO Sheng-nan, LIN You-fang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]∥AAAI. 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 922-929.
[143] WU Yuan-kai, TAN Hua-chun, QIN Ling-qiao, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180.
[144] 赵海涛,程慧玲,丁 仪,等.基于深度学习的车联边缘网络交通事故风险预测算法研究[J].电子与信息学报,2020,42(1):50-57.
ZHAO Hai-tao, CHENG Hui-ling, DING Yi, et al. Research on traffic accident risk prediction algorithm of edge internet of vehicles based on deep learning[J]. Journal of Electronics and Information Technology, 2020, 42(1): 50-57.(in Chinese)
[145] 朱虎明,李 佩,焦李成,等.深度神经网络并行化研究综述[J].计算机学报,2018,41(8):1861-1881.
ZHU Hu-ming, LI Pei, JIAO Li-cheng, et al. Review of parallel deep neural network[J]. Chinese Journal of Computers, 2018, 41(8): 1861-1881.(in Chinese)
[146] CHETLUR S, WOOLLEY C, VANDERMERSCH P, et al. cuDNN: efficient primitives for deep learning[J]. arXiv e-Print, 2012, DOI: arXiv:1410.0759.