[1] 邝宏柱,廖志高,柳本民.高速公路隧道路面抗滑性能评价标准研究[J].公路,2007,4(9):85-88.
KUANG Hong-zhu, LIAO Zhi-gao, LIU Ben-min. A study on evaluation standard of skid resistance performance for expressway tunnel pavement [J]. Highway, 2007, 4(9): 85-88.(in Chinese)
[2] NAJAFI S, FLINTSCH G W, MEDINA A. Linking roadway crashes and tire-pavement friction: a case study[J]. International Journal of Pavement Engineering, 2017, 18(2): 119-127.
[3] KOKKALIS A G, PANAGOULI O K. Fractal evaluation of pavement skid resistance variations. I: surface wetting[J]. Chaos Solitons and Fractals, 1998, 9(11): 1875-1890.
[4] AHAMMED M A, TIGHE R L. Early-life, long-term, and seasonal variations in skid resistance in flexible and rigid pavements[J]. Transportation Research Record, 2009(2094): 112-120.
[5] HALL J W, SMITH K L, TITUS-GLOVER L, et al. Guide for pavement friction[R]. Washington DC: National Cooperative Highway Research Program, 2009.
[6] 王旭东.足尺路面试验环道路面结构与材料设计[J].公路交通科技,2017,34(6):30-37.
WANG Xu-dong. Design of pavement structure and material for full-scale test track[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 30-37.(in Chinese)
[7] ZHANG Jun-ning, YANG Shao-pu, LI Shao-hua, et al.
Influence of vehicle-road coupled vibration on tire adhesion based on nonlinear foundation[J]. Applied Mathematics and Mechanics(English Edition), 2021, 42: 607-624.
[8] 黄晓明,郑彬双.沥青路面抗滑性能研究现状与展望[J].中国公路学报,2019,32(4):32-49.
HUANG Xiao-ming, ZHENG Bin-shuang. Research status and progress for skid resistance performance of asphalt pavements[J]. China Journal of Highway and Transport, 2019, 32(4): 32-49.(in Chinese)
[9] GROSCH K.Visco-elastic properties and the friction of solids: relation between the friction and visco-elastic properties of rubber[J]. Nature, 1963, 197: 858-859.
[10] LORENZ B, PYCKHOUT-HINTZEN W, PERSSON B N J. Master curve of viscoelastic solid: using causality to determine the optimal shifting procedure, and to test the accuracy of measured data[J]. Polymer, 2014, 55(2): 565-571.
[11] LORENZ B, OH Y R, NAM S K, et al. Rubber friction on road surfaces: experiment and theory for low sliding speeds[J]. Journal of Chemical Physics, 2015, 142(19): 194701.
[12] SCARAGGI M, PERSSON B N J. Rolling friction: comparison of analytical theory with exact numerical results[J]. Tribology Letters, 2014, 55(1): 15-21.
[13] MATAEI B, ZAKERI H, ZAHEDI M, et al. Pavement friction and skid resistance measurement methods: a literature review[J]. Open Journal of Civil Engineering, 2016, 6(4): 537-565.
[14] LEI Yong, HU Xiao-di, WANG Hai-nian, et al. Effects of vehicle speeds on the hydrodynamic pressure of pavement surface: measurement with a designed device[J]. Measurement, 2017, 98: 1-9.
[15] ANUPAM K. Numerical simulation of vehicle hydroplaning
and skid resistance on grooved pavement[D]. Singapore: National University of Singapore, 2012.
[16] KOGBARA R B, MASAD E A, KASSEM E, et al. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements[J]. Construction and Building Materials, 2016, 114: 602-617.
[17] TAN Tan, FAN Ze-peng, XING Chao, et al. Evaluation of
geometric characteristics of fine aggregate and its impact on viscoelastic property of asphalt mortar[J]. Applied Sciences, 2019, DOI: 10.3390/app10010130.
[18] KANE M, EDMONDSON V. Long-term skid resistance of asphalt surfacings and aggregates' mineralogical composition: generalisation to pavements made of different aggregate types[J]. Wear, 2020, 454/455: 203339.
[19] DE LUCA M, ABBONDATI F, PIROZZI M, et al. Preliminary study on runway pavement friction decay using data mining[J]. Transportation Research Procedia, 2016, 14: 3751-3760.
[20] COUTERMARSH B A, SHOOP S A. Tire slip-angle force measurements on winter surfaces[J]. Journal of Terramechanics, 2009, 46(4): 157-163.
[21] WAMBOLDJ C, KULAKOWSKI B T. Limitations of using skid number in accident analysis and pavement management[J]. Transportation Research Record, 1991(1311): 43-50.
[22] GROSCH K A. Rubber abrasion and tire wear[J]. Rubber Chemistry and Technology, 2008, 81(3): 470-505.
[23] WANG Shao-wei, VENEZIANO D, HUANG Jiang, et al.
Estimating wet-pavement exposure with precipitation data: final report[R]. Sacramento: California Department of Transportation(Caltrans)Division of Research and Innovation, 2006.
[24] AL-QADI I L, FLINTSCH G W, ROOSEVELT D S, et al. Feasibility of using friction indicators to improve winter maintenance operations and mobility[R]. Washington DC:National Cooperative Highway Research Program, 2002.
[25] HAN Sen, LIU Meng-mei, FWA T F. Testing for low-speed skid resistance of road pavements[J]. Road Materials and Pavement Design, 2020, 21(5): 1312-1325.
[26] CHEN Bo, ZHANG Xiao-ning, YU Jiang-miao, et al.
Impact of contact stress distribution on skid resistance of asphalt pavements[J]. Construction and Building Materials, 2017, 133: 330-339.
[27] KHALEGHIAN S, EMAMI A, TAHERI S. A technical
survey on tire-road friction estimation[J]. Friction, 2017, 5(2): 123-146.
[28] PERERA R W, KOHN S D. NCHRP web document 42: issues in pavement smoothness[R]. Washington DC: Transportation Research Board, 2002.
[29] MASAD E, REZAEI A, CHOWDHURY A, et al. Predicting asphalt mixture skid resistance based on aggregate characteristics[R]. Canyon: Texas Transportation Institute, 2009.
[30] SAYERS M W, KARAMIHAS S M. Interpretation of road roughness profile data[R]. McLean: Federal Highway Administration, 1996.
[31] GOUBERT L, BERGIERS A. About the reproducibility of
texture profiles and the problem of spikes[C]∥VTTI. 7th Symposium on Pavement Surface Characteristics: SURF 2012. Norfolk: VTTI, 2012: 1-14.
[32] KATICHA S W, MOGROVEJO D E, FLINTSCH G W, et al. Adaptive spike removal method for high-speed pavement macrotexture measurements by controlling the false discovery rate[J]. Transportation Research Record, 2015(2525): 100-101.
[33] BENJAMINI Y, HOCHBERG Y. Controlling the false
discovery rate: a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society, Series B: Methodological, 1995, 57(1): 289-300.
[34] STOREY J D, TIBSHIRANI R. Statistical significance for genomewide studies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9440-9445.
[35] RICHARD C, SOHANEY, ROBERT O R. Three dimensional pavement texture evaluation at Mn/ROAD[R]. Austin: Minnesota Department of Transportation Research Services Section, 2012.
[36] DONG N, PROZZI J A, NI F. Reconstruction of 3D pavement texture on handling dropouts and spikes using multiple data processing methods[J]. Sensors, 2019, DOI: 10.3390/s19020278.
[37] CHU L J, FWA T F. Pavement skid resistance consideration in rain-related wet-weather speed limits determination[J]. Road Materials and Pavement Design, 2018, 19(2): 334-352.
[38] WASILEWSKA M, GARDZIEJCZYK W, GIERASIMIUK P.
Comparison of measurement methods used for evaluation the skid resistance of road pavements in Poland—case study[J]. International Journal of Pavement Engineering, 2020, 21(13): 1662-1668.
[39] LEU M C, HENRY J J. Prediction of skid resistance as a function of speed from pavement texture[J]. Transportation Research Record, 1978(666): 7-13.
[40] FUÜLÖP I A, BOGÁRDI I, GULYÁS A, et al. Use of
friction and texture in pavement performance modeling[J]. Journal of Transportation Engineering, 2000, 126(3): 243-248.
[41] ANDRIEJAUSKASA T, VOROBJOVASA V, MIELONASB V. Evaluation of skid resistance characteristics and measurement methods[C]∥VGTU. 9th International Conference on Environmental Engineering. Vilnius: VGTU, 2014: 1-8.
[42] SENGOZ B, TOPAL A, TANYEL S. Comparison of pavement surface texture determination by sand patch test and 3D laser scanning[J]. Periodica Polytechnica Civil Engineering, 2012, 56(1): 73-78.
[43] UECKERMANN A, WANG D, OESER M, et al. Calculation of skid resistance from texture measurements[J]. Journal of Traffic and Transportation Engineering(English Edition), 2015, 2(1): 3-16.
[44] LI Lin, WANG K C P, LI Q J. Geometric texture indicators for safety on AC pavements with 1 mm 3D laser texture data[J]. International Journal of Pavement Research and Technology, 2016, 9(1): 49-62.
[45] 王旭东,张 蕾,周兴业,等.RIOHTRACK足尺路面试验环道2017年试验研究概况[J].公路交通科技,2018,35(4):1-13.
WANG Xu-dong, ZHANG Lei, ZHOU Xing-ye, et al. Review of researches of RIOHTRACK in 2017[J]. Journal of Highway and Transportation Research and Development, 2018, 35(4): 1-13.(in Chinese)
[46] 廖亦源.基于足尺环道的沥青路面抗滑性能衰变规律的研究[D].重庆:重庆交通大学,2019.
LIAO Yi-yuan. Research on regularity of skid resistance regradation of asphalt pavement based on full-scale pavement loop[D]. Chongqing: Chongqing Jiaotong University, 2019.(in Chinese)
[47] LI Q, YANG G, WANG K C P, et al. Novel macro- and microtexture indicators for pavement friction by using high-resolution three-dimensional surface data[J]. Transportation Research Record, 2017(2641): 164-176.
[48] 陈 德.沥青混合料表面构造图像评价方法及抗滑降噪性能预测研究[D].西安:长安大学,2015.
CHEN De. Study on image-based texture analysis method and prediction of skid-resistance and tire/pavement noise reduction of HMA[D]. Xi'an: Chang'an University, 2015.(in Chinese)
[49] RADO Z, KANE M. An initial attempt to develop an empirical relation between texture and pavement friction using the HHT approach[J]. Wear, 2014, 309(1/2): 233-246.
[50] ZELELEW H, KHASAWNEH M, ABBAS A. Wavelet-based characterisation of asphalt pavement surface macro-texture[J]. Road Materials and Pavement Design, 2014, 15(3): 622-641.
[51] 周兴林,肖神清,刘万康,等.沥青路面表面纹理的多重分形特征及其磨光行为[J].东南大学学报(自然科学版),2018,48(1):175-180.
ZHOU Xing-lin, XIAO Shen-qing, LIU Wan-kang, et al. Multifractal characteristics and polishing behaviors of surface texture on asphalt pavement[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(1): 175-180.(in Chinese)
[52] 周兴林,肖神清,肖旺新,等.粗集料表面纹理粗糙度的多重分形评价[J].华中科技大学学报(自然科学版),2017,45(2):29-33.
ZHOU Xing-lin, XIAO Shen-qing, XIAO Wang-xin, et al. Multi-fractal evaluation on roughness of coarse aggregate surface texture[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(2): 29-33.(in Chinese)
[53] XIAO Shen-qing, TAN Yi-qiu, XING Chao, et al. Scale
demarcation of self-affine surface of coarse aggregate and its relationship with rubber friction[J]. Road Materials and Pavement Design, 2020, DOI: 10.1080/14680629.2020.1728365.
[54] YU Miao, YOU Zhan-ping, WU Guo-xiong, et al. Measurement and modeling of skid resistance of asphalt pavement: a review[J]. Construction and Building Materials, 2020, 260: 119878.
[55] BROWNE A, CHENG H, KISTLER A. Dynamic hydroplaning of pneumatic tires[J]. Wear, 1972, 20(1):1-28.
[56] GROGGER H, WEISS M. Calculation of the three-dimensional free surface flow around an automobile tire[J]. Tire Science and Technology, 1996, 24(1): 39-49.
[57] MARTIN C. Hydroplaning of tire hydroplaning: final
report[R]. Atlanta: Georgia Institute of Technology, 1966.
[58] STOCKER A J, DOTSON J T, IVEY D L. Automobile tire hydroplaning: a study of wheel spin-down and other variables[R]. Canyon: Texas Transportation Institute, 1974.
[59] DINESCU C, HIRSCH C, LEONARD B, et al. Fluid-structure interaction model for hydroplaning simulations[J]. SAE International, 2006, DOI: 10.4271/2006-01-1190.
[60] CHO J, LEE H, SOHN J, et al. Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire[J]. European Journal of Mechanics A: Solids, 2006, 25(6): 914-926.
[61] FWA T F. Skid resistance determination for pavement
management and wet-weather road safety[J]. International Journal of Transportation Science and Technology, 2017, 6(3): 217-227.
[62] CHU L, FWA T F. Incorporating pavement skid resistance and hydroplaning risk considerations in asphalt mix design[J]. Journal of Transportation Engineering, 2016, 142(10): 0401603.
[63] FWAT F, PASINDU H R, ONG G P. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration[J]. Journal of Transportation Engineering, 2012, 138(4): 423-429.
[64] ANUPAM K, SRIRANGAM S K, SCARPAS A, et al.
Influence of temperature on tire-pavement friction: analyses[J]. Transportation Research Record, 2013(2369): 114-124.
[65] SRIRANGAM S K, ANUPAM K, KASBERGEN C, et al. Analysis of asphalt mix surface-tread rubber interaction by using finite element method[J]. Journal of Traffic and Transportation Engineering(English Edition), 2017, 4(4): 395-402.
[66] SRIRANGAM S K, ANUPAM K, SCARPAS A, et al.
Development of a thermomechanical tyre-pavement interaction model[J]. International Journal of Pavement Engineering, 2014, 16(8): 721-729.
[67] SRIRANGAM S K, ANUPAM K, SCARPAS A, et al.
Safety aspects of wet asphalt pavement surfaces through field and numerical modeling investigations[J]. Transportation Research Record, 2014(2446): 37-51.
[68] TANG T, ANUPAM K, KASBERGEN C, et al. A finite
element study of rain intensity on skid resistance for permeable asphalt concrete mixes[J]. Construction and Building Materials, 2019, 220: 464-475.
[69] PERSSON B N J. Theory of rubber friction and contact
mechanics[J]. The Journal of Chemical Physics, 2001, 115(8): 3840-3861.
[70] PERSSON B N J. Rubber friction: role of the flash
temperature[J]. Journal of Physics: Condensed Matter, 2006, 18(32): 1-22.
[71] KLÜPPEL M, HEINRICH G. Rubber friction on self-affine road tracks[J]. Rubber Chemistry and Technology, 2000, 73(4): 578-606.
[72] LEGAL A, KLÜPPEL M. Investigation and modelling of
rubber stationary friction on rough surfaces[J]. Journal of Physics: Condensed Matter, 2007, 20(1): 015007.
[73] LORENZ B, CARBONE G, SCHULZE C. Average separation between a rough surface and a rubber block: comparison between theories and experiments[J]. Wear, 2010, 268(7/8): 984-990.
[74] MOTAMEDI M. Road surface measurement and multi-scale modeling of rubber road contact and adhesion[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2015.
[75] ALHASAN A, SMADI O, BOU-SAAB G, et al. Pavement friction modeling using texture measurements and pendulum skid tester[J]. Transportation Research Record, 2018(2672): 440-451.
[76] KANE M, CEREZO V. A contribution to tire/road friction modeling: from a simplified dynamic frictional contact model to a “dynamic friction tester” model[J]. Wear, 2015, 342/343: 163-171.
[77] TAN Tan, XING Chao, TAN Yi-qiu, et al. Safety aspects on icy asphalt pavement in cold region through field investigations[J]. Cold Regions Science and Technology, 2019, 161: 21-31.
[78] TAN Tan, XING Chao, TAN Yi-qiu, et al. Rubber friction on icy pavement: experiments and modeling[J]. Cold Regions Science and Technology, 2020, 174: 103022.
[79] 沙爱民,童 峥,高 杰.基于卷积神经网络的路表病害识别与测量[J].中国公路学报,2018,31(1):1-10.
SHA Ai-min, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10.(in Chinese)
[80] CHEN Wei-wei, WANG Wei-xing, WANG Kevin, et al.
Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: a review[J]. Journal of Traffic and Transportation Engineering(English Edition), 2020, 7(6): 748-774.
[81] MAEDA H, SEKIMOTO Y, SETO T, et al. Road damage
detection and classification using deep neural networks with smartphone images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1127-1141.
[82] NAJAFI S, FLINTSCH G W, KHALEGHIAN S. Pavement friction management-artificial neural network approach[J]. International Journal of Pavement Engineering, 2016, 20(2): 125-135.
[83] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al.
Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[84] MARCELINO P, LURDES A M, FORTUNATO E, et al.
Machine learning for pavement friction prediction using scikit-learn[C]∥Springer. 18th EPIA Conference on Artificial Intelligence. Berlin: Springer, 2017: 331-342.
[85] TONG Zheng, GAO Jie, SHA Ai-min, et al. Convolutional neural network for asphalt pavement surface texture analysis[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1056-1072.
[86] ZHAN Y, LI J Q, YANG G W, et al. Friction-ResNets:
deep residual network architecture for pavement skid resistance evaluation[J]. Journal of Transportation Engineering, Part B: Pavements, 2020, 146(3): 04020027.
[87] KANAFI M M, TUONONEN A J. Top topography surface roughness power spectrum for pavement friction evaluation[J]. Tribology International, 2017, 107: 240-249.
[88] KOGBARA R B, MASAD E A, WOODWARD D, et al.
Relating surface texture parameters from close range photogrammetry to grip-tester pavement friction measurements[J]. Construction and Building Materials, 2018, 166: 227-240.
[89] DING S, WANG K, YANG E, et al. Influence of effective texture depth on pavement friction based on 3D texture area[J]. Construction and Building Materials, 2021, 287(5/6): 123002.