|Table of Contents|

Review on cement concrete internally cured by SAP(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2021年04期
Page:
1-31
Research Field:
综述
Publishing date:

Info

Title:
Review on cement concrete internally cured by SAP
Author(s):
SHEN Ai-qin YANG Jing-yu GUO Yin-chuan QIN Xiao LI Peng
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
pavement engineering SAP internally curing cement concrete mix ratio design shrinkage and crack resistance durability
PACS:
U414
DOI:
10.19818/j.cnki.1671-1637.2021.04.001
Abstract:
The material properties of a superabsorbent polymer(SAP)were analyzed. Key parameters of mix ratio designs for SAP internally curing concrete were evaluated. A design method for internally cured concrete was developed. The water transmission mechanism of SAP internally curing concrete was investigated from the perspective of the water absorption and water release behavior of the SAP and the hydration characteristics of concrete. The shrinkage and crack resistance, mechanical properties, and durability of SAP internally curing concrete were examined. Its performance enhancement mechanism was explored by considering the characteristics of the interfacial transition zone, hydration products, and pore structure. The engineering applications of SAP internally curing concrete at home and abroad, as well as future research directions and application prospects, were identified. Analysis results show that the principle of SAP internally curing concrete relies on its water absorption and release characteristics. However, there is some variability in the performance of internally cured cement concrete because of the differences in SAP performance and concrete mix ratio and other factors. SAP, as a result of osmotic pressure and ionic concentration, is able to release water over time to replenish the loss of water inside the concrete, reduce the early heat of hydration, and enhance the later hydration. The properties of SAP internally curing concrete are affected by its particle size and admixture amount, and additional water quantity. SAP can effectively suppress the self-shrinkage and drying shrinkage and enhance the mechanical properties of concrete when all the parameters are suitable. SAP can also promote the hydration reaction, generate more hydration products, fill pores of concrete, enhance the compactness of concrete, refine the pore structure, and break off the connected pores, thereby improving the durability of concrete, including its frost resistance and impermeability. The reswelling ability of SAP can block concrete cracks and generate hydration products, such as CaCO3, to enable concrete to self-heal. The curing effects of SAP can enhance the adhesion between cement stones andaggregates, reduce or even eliminate the microcracks in the interfacial transition zone, and improve the strength of the interfacial transition zone. The SAP internally curing concrete can be successfully applied to bridge deck integrative layers, cross diaphragms, wet joints, bridge piers, tunnel secondary linings, etc. with an excellent anti-cracking effect. 46 figs, 137 refs.

References:

[1] SHEN Ai-qin, LIN Sen-lin, GUO Yin-chuan, et al. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and Freeze-thaw interaction in seasonal frozen regions[J]. Construction and Building Materials, 2018, 174: 684-692.
[2] GUO Yin-chuan, CHEN Zhi-hui, QIN Xiao, et al. Evolution mechanism of microscopic pores in pavement concrete under multi-field coupling[J]. Construction and Building Materials, 2018, 173: 381-393.
[3] LI Zhen, DING Si-qi, YU Xun, et al. Multifunctional
cementitious composites modified with nano titanium dioxide: a review[J]. Composites Part A: Applied Science and Manufacturing, 2018, 111: 115-137.
[4] WANG Ke-jin, JANSEN D C, SHAH S P, et al.
Permeability study of cracked concrete[J]. Cement and Concrete Research, 1997, 27(3): 381-393.
[5] LAWRENCE P, CYR M, RINGOT E. Mineral admixtures in mortars: effect of inert materials on short-term hydration[J]. Cement and Concrete Research, 2003, 33(12): 1939-1947.
[6] BENTZ D P, WEISS W J. Internal curing: a 2010 state-of-the-art review[R]. Washington DC: NIST, 2011.
[7] 马先伟,张家科,刘剑辉.高性能水泥基材料内养护剂用高吸水树脂的研究进展[J].硅酸盐学报,2015,43(8):1099-1110.
MA Xian-wei, ZHANG Jia-ke, LIU Jian-hui. Review on superabsorbent polymer as internal curing agent of high performance cement-based material[J]. Journal of the Chinese Ceramic Society, 2015, 43(8): 1099-1110.(in Chinese)
[8] SHEN De-jian, SHI Hua-feng, TANG Xiao-jian, et al. Effect of internal curing with super absorbent polymers on residual stress development and stress relaxation in restrained concrete ring specimens[J]. Construction and Building Materials, 2016, 120: 309-320.
[9] 魏 亚,郑小波,郭为强.干燥环境下内养护混凝土收缩、强度及开裂性能[J].建筑材料学报,2016,19(5):902-908.
WEI Ya, ZHENG Xiao-bo, GUO Wei-qiang.Shrinkage, strength development and cracking of internally cured concrete exposed to dry conditions[J]. Journal of Building Materials, 2016, 19(5): 902-908.(in Chinese)
[10] ZOHURIAAN-MEHR M J, OMIDIAN H, DOROUDIANI S, et al. Advances in non-hygienic applications of superabsorbent hydrogel materials[J]. Journal of Materials Science,2010, 45(21): 5711-5735.
[11] MIGNON A, SNOECK D, D'HALLUIN K, et al. Alginate biopolymers:counteracting the impact of superabsorbent polymers on mortar strength[J]. Construction and Building Materials, 2016, 110: 169-174.
[12] 陈雪萍,翁志学,黄志明.高吸水性树脂的结构与吸水机理[J].化工新型材料,2002,30(3):19-21.
CHEN Xue-ping, WENG Zhi-xue, HUANG Zhi-ming. Structure and water absorbing mechanisms of superabsorbent resin[J]. New Chemical Materials, 2002, 30(3): 19-21.(in Chinese)
[13] 刘新容.丙烯酸-丙烯酞胺高吸水性树脂溶液共聚合成与吸液吸附性能研究[D].湘潭:湘潭大学,2006.
LIU Xin-rong. Absorbency and adsorption of poly(acrylate-co-acrylamide)by solution polymerization[D]. Xiangtan: Xiangtan University, 2006.(in Chinese)
[14] 朱长华,李享涛,王保江,等.内养护对混凝土抗裂性及水化的影响[J].建筑材料学报,2013,16(2):221-225.
ZHU Chang-hua, LI Xiang-tao, WANG Bao-jiang, et al. Influence of internal curing on crack resistance and hydration of concrete[J]. Journal of Building Materials, 2013, 16(2): 221-225.(in Chinese)
[15] JUSTS J, WYRZYKOWSKI M, BAJARE D, et al. Internal curing by superabsorbent polymers in ultra-high performance concrete[J]. Cement and Concrete Research, 2015, 76: 82-90.
[16] HASHOLT M T, JENSEN O M, KOVLER K, et al. Can superabsorbent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?[J]. Construction and Building Materials, 2012, 31: 226-230.
[17] PAIVA H, ESTEVES L P, CACHIM P B, et al. Rheology and hardened properties of single-coat render mortars with different types of water retaining agents[J]. Construction and Building Materials, 2009, 23: 1141-1146.
[18] WEHBE Y, GHAHREMANINEZHAD A. Combined effect of shrinkage reducing admixtures(SRA)and superabsorbent polymers(SAP)on the autogenous shrinkage, hydration and properties of cementitious materials[J]. Construction and Building Materials, 2017, 138: 151-162.
[19] SONG C, CHOI Y C, CHOI S. Effect of internal curing by superabsorbent polymers-internal relative humidity and autogenous shrinkage of alkali-activated slag mortars[J]. Construction and Building Materials, 2016, 123: 198-206.
[20] SOLIMAN A M, NEHDI M L. Effect of partially hydrated cementitious materials and superabsorbent polymer on early-age shrinkage of UHPC[J]. Construction and Building Materials, 2013, 41: 270-275.
[21] KANG S H, HONG S G, MOON J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete[J]. Construction and Building Materials, 2018, 172: 29-40.
[22] SCHRÖFL C, MECHTCHERINE V, GORGES M. Relation between the molecular structure and the efficiency of superabsorbent polymers(SAP)as concrete admixture to mitigate autogenous shrinkage[J]. Cement and Concrete Research, 2012, 42(6): 865-873.
[23] YANG Jin, WANG Fa-zhou, LIU Zhi-chao, et al. Early-state water migration characteristics of superabsorbent polymers in cement pastes[J]. Cement and Concrete Research, 2019, 118: 25-37.
[24] JUSTS J, WYRZYKOWSKI M, WINNEFELD F, et al.
Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio-a calorimetry study[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115: 425-432.
[25] 张珍林.高吸水性树脂对高强混凝土早期减缩效果及机理研究[D].北京:清华大学,2013.
ZHANG Zhen-lin. Investigation on the shrinkage-reducing effect of super-absorbent polymer in high-strength concrete and its mechanism[D]. Beijing: Tsinghua University, 2013.(in Chinese)
[26] 孔祥明,张珍林.高吸水性树脂对高强混凝土浆体孔结构的影响[J].硅酸盐学报,2013,41(11):1474-1480.
KONG Xiang-ming, ZHANG Zhen-lin. Effect of super-absorbent polymer on pore structure of hardened cement paste in high-strength concrete[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1474-1480.(in Chinese)
[27] 孔祥明,张珍林.高吸水树脂对高强混凝土早期减缩效果及机理研究[J].建筑材料学报,2014,17(4):559-565,571.
KONG Xiang-ming, ZHANG Zhen-lin. Investigation on the shrinkage-reducing effect of super-absorbent polymer in high-strength concrete and its mechanism[J]. Journal of Building Materials, 2014, 17(4): 559-565, 571.(in Chinese)
[28] RIYAZI S, KEVERN J T, MULHERON M. Super absorbent polymers(SAPs)as physical air entrainment in cement mortars[J]. Construction and Building Materials, 2017, 147: 669-676.
[29] LAUSTSEN S, HASHOLT M T, JENSEN O M. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete[J]. Materials and Structures, 2015, 48: 357-368.
[30] 钟佩华.高吸水性树脂(SAP)对高强混凝土自收缩性能的影响及作用机理[D].重庆:重庆大学,2015.
ZHONG Pei-hua. Study on the autogenous shrinkage and mechanism of high strength concrete with super absorbent polymer[D]. Chongqing: Chongqing University, 2015.(in Chinese)
[31] SNOECK D, SCHAUBROECK D, DUBRUEL P, et al. Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50[J]. Construction and Building Materials, 2014, 72: 148-157.
[32] 林 真,彭少贤,赵西坡,等.多孔高吸水性树脂制备方法及应用研究进展[J].化工新型材料,2013,41(2):160-162.
LIN Zhen, PENG Shao-xian, ZHAO Xi-po,et al. Research progress on forming method and application of porous superabsorbent resin[J]. New Chemical Materials, 2013, 41(2): 160-162.(in Chinese)
[33] 赵 林,蔡雅红,何荷苗,等.高吸水性树脂的制备工艺及应用研究进展[J].工程塑料应用,2018,46(8):143-148.
ZHAO Lin, CAI Ya-hong, HE He-miao, et al. Research progress on preparation method and application of super absorbent resins[J]. Engineering Plastics Application, 2018, 46(8): 143-148.(in Chinese)
[34] 贺龙强,胡 鹏,刘中阳.耐盐性淀粉接枝丙烯酸类高吸水性树脂的制备及表征[J].化工新型材料,2015,43(8):96-98.
HE Long-qiang, HU Peng, LIU Zhong-yang. Preparation and characterization of salt-resistance super absorbent resin by graft copolymerization of starch and acrylic acid series[J].New Chemical Materials, 2015, 43(8): 96-98.(in Chinese)
[35] 郭 军,吴小说,刘廷国,等.均相条件下的水稻秸秆-丙烯酸-丙烯酰胺三元共聚物的性能研究[J].化工新型材料,2018,46(9):125-128.
GUO Jun, WU Xiao-shuo, LIU Ting-guo, et al. Preparation of super water absorption resin using acrylic acid grafted onto rice straw by irradiation[J]. New Chemical Materials, 2018, 46(9): 125-128.(in Chinese)
[36] 严小妹.聚丙烯酸类高吸水性树脂的合成研究[D].广州:华南理工大学,2013.
YAN Xiao-mei. Study on the synthesis of super absorbent polymers based on polyacrylic acid[D].Guangzhou: South China University of Technology, 2013.(in Chinese)
[37] 石 亮,张晓梅,陈超越,等.微波辐射交联羧甲基纤维素接枝丙烯酰胺制备高吸水性树脂及溶胀性能[J].化工新型材料,2016,44(9):208-210.
SHI Liang, ZHANG Xiao-mei, CHEN Chao-yue,et al. Preparation and swelling property of crosslinked carboxymethyl cellulose grafted AM superabsorbent resin by microwave irradiation[J]. New Chemical Materials, 2016, 44(9): 208-210.(in Chinese)
[38] 杨 帆.聚乙烯醇/丙烯酸/丙烯酰胺高吸水树脂的制备及性能研究[D].秦皇岛:燕山大学,2015.
YANG Fan. Synthesis and properties of superabsorbent resin of polyvinyl alcohol/acrylicacid/acrylamide[D]. Qinhuangdao: Yanshan University, 2015.(in Chinese)
[39] 胡 灯.改性聚天冬氨酸/聚丙烯酸/凹凸棒土复合吸水性树脂的制备及性能研究[D].太原:太原理工大学,2016.
HU Deng. Preparation and characterization of modified poly(aspartic acid)/poly(acrylic acid)/attapulgite composite absorbent resin[D]. Taiyuan: Taiyuan University of Technology, 2016.(in Chinese)
[40] BAKER J P, BLANCH H W, PRAUSNITZ J M. Swelling
properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory[J]. Polymer, 1995, 36(5): 1061-1069.
[41] 林润雄,姜 斌,黄毓礼.高吸水性树脂吸水机理的探讨[J].北京化工大学学报(自然科学版),1998(3):22-27.
LIN Run-xiong, JIANG Bin, HUANG Yu-li. Study on water absorbing mechanism of absorbent resin[J]. Journal of Beijing University of Chemical Technology, 1998(3): 22-27.(in Chinese)
[42] 马 斐,程冬炳,王 颖,等.聚丙烯酸类高吸水性树脂的合成及吸水机理研究进展[J].武汉工程大学学报,2011,33(1):4-9,14.
MA Fei, CHENG Dong-bing, WANG Ying, et al. Research trend on reaction principle and water absorption mechanism of polyacrylic acid superabsorbent polymers[J]. Journal of Wuhan Institute of Technology, 2011, 33(1): 4-9, 14.(in Chinese)
[43] 叶 华,赵建青,张 宇.吸水树脂水泥基材料自养护外加剂的研究[J].华南理工大学(自然科学版),2003,31(11):41-44.
YE Hua, ZHAO Jian-qing, ZHANG Yu. Superabsorbent polymer as self-curing admixture in cement-based materials[J]. Journal of South China University of Technology(Natural Science), 2003, 31(11): 41-44.(in Chinese)
[44] 杨瑞成,杨 娟,穆元春,等.聚丙烯酸高吸水性聚合物的制备与性能[J].兰州理工大学学报,2008,34(5):24-27.
YANG Rui-cheng, YANG Juan, MU Yuan-chun, et al. Preparation and performance of polyacrylic super-absorbent polymer[J]. Journal of Lanzhou University of Technology, 2008, 34(5): 24-27.(in Chinese)
[45] KONG Xiang-ming, ZHANG Zhen-lin, LU Zi-chen. Effect of
pre-soaked superabsorbent polymer on shrinkage of high-strength concrete[J]. Materials and Structures, 2015, 48(9): 2741-2758.
[46] 何文慧.内养护水泥基材料的力学及变形性能[D].哈尔滨:哈尔滨工业大学,2011.
HE Wen-hui. Mechanics and deformation performances of internal curing cement-based materials[D]. Harbin: Harbin Institute of Technology, 2011.(in Chinese)
[47] 王文彬,郭 飞,李 磊,等.高吸水树脂内养护对水泥基材料性能的影响[J].混凝土,2014(10):86-88.
WANG Wen-bin, GUO Fei, LI Lei, et al. Effects of internal curing by superabsorbent polymers on performance of cement based materials[J]. Concrete, 2014(10): 86-88.(in Chinese)
[48] 李 明,刘加平,田 倩,等.内养护水泥基材料早龄期变形行为[J].硅酸盐学报,2017,45(11):1635-1641.
LI Ming, LIU Jia-ping, TIAN Qian, et al. Early age deformation of cement-based materials containing internal curing agent[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1635-1641.(in Chinese)
[49] 詹炳根,丁以兵.超强吸水剂对混凝土早期内部相对湿度的影响[J].合肥工业大学学报(自然科学版),2006,29(9):1151-1154.
ZHAN Bing-gen, DING Yi-bing. Effect of super-absorbent polymers on the internal relative humidity in high performance concrete at early ages[J]. Journal of Hefei University of Technology(Natural Science), 2006, 29(9): 1151-1154.(in Chinese)
[50] 覃 潇.SAP内养生路面混凝土水分传输特性及耐久性研究[D].西安:长安大学,2019.
QIN Xiao. Research on moisture transmission characteristics and durability of SAP internal curing pavement concrete[D]. Xi'an: Chang'an University, 2019.(in Chinese)
[51] POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened Portland cement paste[J]. Bulletin, 1947, 43(9): 101-132.
[52] HE Zi-ming, SHEN Ai-qin, GUO Yin-chuan, et al. Cement-based materials modified with superabsorbent polymers: a review[J]. Construction and Building Materials, 2019, 225: 569-590.
[53] 张守祺,路振宝,昂 源,等.高吸水树脂吸液特性对混凝土性能的影响[J].硅酸盐学报,2020,48(8):1278-1284.
ZHANG Shou-qi, LU Zhen-bao, ANG Yuan, et al. Effect of super-absorbent polymer water absorption characteristics on performance of concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1278-1284.(in Chinese)
[54] KOVLER K, JENSEN O M. Activities of RILEM technical committee: internal curing of concrete and anticipated research[C]∥ACI. ACI Fall 2007 Convention. Puerto Rico: ACI, 2007: 15-26.
[55] JENSEN O M, HANSEN P F. Water-entrained cement-based materials: Ⅰ. principles and theoretical background[J]. Cement and Concrete Research, 2001, 31(4): 647-654.
[56] MONTANARI L, SURANENI P, WEISS W J. Accounting for water stored in superabsorbent polymers in increasing the degree of hydration and reducing the shrinkage of internally cured cementitious mixtures[J]. Advances in Civil Engineering Materials, 2017, 6(1): 583-599.
[57] BENTZ D P, SNYDER K A. Protected paste volume in concrete: extension to internal curing using saturated lightweight fine aggregate[J]. Cement and Concrete Research, 1999, 29(11): 1863-1867.
[58] 高新文,何 锐.高吸水树脂对混凝土强度与水化过程的影响[J].公路交通科技,2018,35(8):34-39.
GAO Xin-wen, HE Rui. Influence of super absorbent polymer on strength and hydration process of concrete[J]. Journal of Highway and Transportation Research and Development, 2018, 35(8): 34-39.(in Chinese)
[59] 张 宇,叶 华,赵建青.高吸水树脂改性建筑砂浆和易性和粘结性能的研究[J].化学建材,2004(5):53-56,59.
ZHANG Yu, YE Hua, ZHAO Jian-qing. Study of workable and adhesion properties of building mortar modified by superabsorbent resins[J]. Chemical Materials For Construction, 2004(5): 53-56, 59.(in Chinese)
[60] SECRIERU E, MECHTCHERINE V, SCHRÖFL C, et al. Rheological characterisation and prediction of pumpability of strain-hardening cement-based-composites(SHCC)with and without addition of superabsorbent polymers(SAP)at various temperatures[J]. Construction and Building Materials, 2016, 112: 581-594.
[61] MECHTCHERINE V, SECRIERU E, SCHRÖFL C. Effect of superabsorbent polymers(SAPs)on rheological properties of fresh cement-based mortars-development of yield stress and plastic viscosity over time[J]. Cement and Concrete Research, 2015, 67: 52-65.
[62] JENSEN O M, HANSEN P F. Water-entrained cement-based materials: Ⅱ. experimental observations[J]. Cement and Concrete Research, 2002, 32(6): 973-978.
[63] CRAEYE B, GEIRNAERT M, SCHUTTER G D. Super
absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks[J]. Construction and Building Materials, 2011, 25(1): 1-13.
[64] AZARIJAFARI H, KAZEMIAN A, RAHIMI M, et al. Effects of pre-soaked super absorbent polymers on fresh and hardened properties of self-consolidating lightweight concrete[J]. Construction and Building Materials, 2016, 113: 215-220.
[65] DANG Jun-tao, ZHAO Jun, DU Zhao-hua. Effect of superabsorbent polymer on the properties of concrete[J]. Polymers, 2017, 9: 672-688.
[66] 龙明策,王 鹏,郑 彤,等.高吸水性树脂溶胀热力学及吸水机理[J].化学通报,2002(10):705-709.
LONG Ming-ce, WANG Peng, ZHENG Tong, et al. Swelling process and water-absorbing mechanism of super-absorbent resin[J]. Chemistry, 2002(10): 705-709.(in Chinese)
[67] POURJAVADI A, KURDTABAR M, MAHDAVINIA G R, et al. Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel[J]. Polymer Bulletin, 2006, 57(6): 813-824.
[68] MÖNNIG, S. Superabsorbing additions in concrete: applications, modelling and comparison of different internal water sources[J]. Uni Stuttgart-Universitätsbibliothek, 2009, 998850330.
[69] NESTLE N, KÜHN A, FRIEDEMANN K, et al. Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR[J]. Microporous and Mesoporous Materials, 2009, 125(1/2): 51-57.
[70] QIN Xiao, SHEN Ai-qin, LYU Zheng-hua, et al. Research on water transport behaviors and hydration characteristics of internal curing pavement concrete[J]. Construction and Building Materials, 2020, 248: 118714.
[71] YANG Jing-yu, GUO Yin-chuan, SHEN Ai-qin, et al. Research on drying shrinkage deformation and cracking risk of pavement concrete internally cured by SAPs[J]. Construction and Building Materials, 2019, 227: 116705.
[72] ESTEVES L P, LUKOIT(·overE)I, ACˇ(·overE)SNIEN(·overE)J. Hydration of cement with superabsorbent polymers[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(2): 1385-1393.
[73] SARBAPALLI D, DHABALIA Y, SARKAR K, et al.
Application of SAP and PEG as curing agents for ordinary cement-based systems: impact on the early age properties of paste and mortar with water-to-cement ratio of 0.4 and above[J]. European Journal of Environmental and Civil Engineering, 2017, 21(10): 1237-1252.
[74] ESPINOZA-HIJAZIN G, LOPEZ M. Extending internal
curing to concrete mixtures with W/C higher than 0.42[J]. Construction and Building Materials, 2011, 25(3): 1236-1242.
[75] ASSMANN A. Physical properties of concrete modified with superabsorbent polymers[D]. Stuttgart: Stuttgart University, 2013.(in German)
[76] 张 蕊,周永祥,高 超,等.SAP对火山灰混凝土收缩性能的改善作用[J].建筑材料学报,2018,21(4):576-582.
ZHANG Rui, ZHOU Yong-xiang, GAO Chao, et al. Improvement of SAP on shrinkage performance of pozzolanic concrete[J]. Journal of Building Materials, 2018, 21(4): 576-582.(in Chinese)
[77] ASSMANN A, REINHARDT H W. Tensile creep and shrinkage of SAP modified concrete[J]. Cement and Concrete Research, 2014, 58: 179-185.
[78] PANG Lu-feng, RUAN Shi-ye, CAI Yong-tao. Effects of internal curing by super absorbent polymer on shrinkage of concrete[J]. Key Engineering Materials, 2011, 477: 200-204.
[79] 陈志晖.SAP内养生路面混凝土收缩及阻裂性能研究[D].西安:长安大学,2019.
CHEN Zhi-hui. Study on shrinkage and cracking resistance of pavement concrete internal curing by superabsorbent polymers[D]. Xi'an: Chang'an University, 2019.(in Chinese)
[80] 王立霞.混凝土内养护技术国内外研究进展[J].混凝土,2014(5):30-34.
WANG Li-xia. Research progress on internal curing concrete[J]. Concrete, 2014(5): 30-34.(in Chinese)
[81] 史才军,吕奎喜,马先伟,等.高吸水性树脂对自密实混凝土性能的影响[J].材料导报,2015,29(20):118-129.
SHI Cai-jun, LYU Kui-xi, MA Xian-wei, et al. Influence of SAP on the properties of self-compacting concrete[J]. Materials Reports, 2015, 29(20): 118-129.(in Chinese)
[82] 阎培渝,余成行,王 强,等.高强自密实混凝土的减缩措施[J].硅酸盐学报,2015,43(4):363-367.
YAN Pei-yu, YU Cheng-xing, WANG Qiang, et al. Shrinkage-reducing measurement of high strength self-compacting concrete[J]. Journal of the Chinese Ceramic Society, 2015, 43(4): 363-367.(in Chinese)
[83] IGARASHI S. Experimental study on prevention of autogenous deformation by internal curing using super-absorbent polymer particles[J]. Materials Science, 2006, DOI: 10.1617/2351580052.009.
[84] SHEN De-jian, WANG Xu-dong, CHENG Da-bao, et al.
Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age[J]. Construction and Building Materials, 2016, 106: 512-522.
[85] KANG S H, HONG S G, MOON J. Shrinkage characteristics of heat-treated ultra-high performance concrete and its mitigation using superabsorbent polymer based internal curing method[J]. Cement and Concrete Composites, 2018, 89: 130-138.
[86] 何 锐,谈亚文,薛 成,等.以高吸水性树脂为混凝土内养护剂的研究进展[J].中国科技论文,2019,14(4):464-470.
HE Rui, TAN Ya-wen, XUE Cheng, et al. Research progress of superabsorbent polymers as internal curing agent in concrete[J]. China Sciencepaper, 2019, 14(4): 464-470.(in Chinese)
[87] 邵 力.高吸水性树脂(SAP)对自密实混凝土性能的影响[D].广州:广州大学,2018.
SHAO Li. Effect of super absorbent polymer on the properties of self-compacting concrete[D]. Guangzhou: Guangzhou University, 2018.(in Chinese)
[88] MA Xian-wei, LIU Jian-hui, WU Ze-mei, et al. Effects of SAP on the properties and pore structure of high performance cement-based materials[J]. Construction and Building Materials, 2017, 131: 476-484.
[89] LYU Zheng-hua, SHEN Ai-qin, MO Shi-xiu, et al. Life-cycle crack resistance and micro characteristics of internally cured concrete with superabsorbent polymers[J]. Construction and Building Materials, 2020, 259(3): 119794.
[90] LYU Zheng-hua, GUO Yin-chuan, CHEN Zhi-hui, et al.
Research on shrinkage development and fracture properties of internal curing pavement concrete based on humidity compensation[J]. Construction and Building Materials, 2019, 203: 417-431.
[91] 张珈碧.高吸水树脂对混凝土断裂性能影响的研究[D].大连:大连理工大学,2018.
ZHANG Jia-bi. Effects on fracture properties of concrete for using SAP[D]. Dalian: Dalian University of Technology, 2018.(in Chinese)
[92] DENG Han-wen. Effects of superabsorbent polymer particles on flexural properties and self-healing behavior of ECC[J]. Journal of Southeast University(English Edition), 2018, 34(1): 95-103.
[93] TITTELBOOM K V, BELIE N D, LEHMANN F, et al. Acoustic emission analysis for the quantification of autonomous crack healing in concrete[J]. Construction and Building Materials, 2012, 28(1): 333-341.
[94] CUENCA E, FERRARA L. Self-healing capability of fiber reinforced cementitious composites[J]. KSCE Journal of Civil Engineering, 2017, 21: 2777-2789.
[95] LEE H X, WONG H S, BUENFELD N R. Potential of superabsorbent polymer for self-sealing cracks in concrete[J]. British Ceramic Transactions, 2014, 109(5): 296-302.
[96] MIGNON A, GRAULUS G J, SNOECK D, et al. pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete[J]. Journal of Materials Science, 2015, 50(2): 970-979.
[97] MIGNON A, SNOECK D, SCHAUBROECK D, et al. pH-responsive superabsorbent polymers: a pathway to self-healing of mortar[J]. Reactive and Functional Polymers, 2015, 93: 68-76.
[98] TITTELBOOM K V, WANG Jian-yun, ARAJO M, et al. Comparison of different approaches for self-healing concrete in a large-scale lab test[J]. Construction and Building Materials, 2016, 107: 125-137.
[99] SNOECK D, DEWANCKELE J, CNUDDE V, et al. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers[J]. Cement and Concrete Composites, 2016, 65: 83-93.
[100] SNOECK D, STEUPERAERT S, TITTELBOOM K V, et al. Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography[J]. Cement and Concrete Research, 2012, 42: 1113-1121.
[101] 秦鸿根,高美蓉,庞超明,等.SAP内养生剂改善膨胀混凝土性能及其机理研究[J].建筑材料学报,2011,14(3):394-399.
QIN Hong-gen, GAO Mei-rong, PANG Chao-ming, et al. Research on performance improvement of expansive concrete with internal curing agent SAP and its action mechanism[J]. Journal of Building Materials, 2011, 14(3): 394-399.(in Chinese)
[102] LIU Jian-hui, FARZADNIA N, SHI Cai-jun. Effects of
superabsorbent polymer on interfacial transition zone and mechanical properties of ultra-high performance concrete[J]. Construction and Building Materials, 2020, 231: 117142.
[103] PIRARD J. Mitigating autogenous shrinkage in HPC by internal curing using superabsorbent polymers[J]. Materials Science, 2006, DOI: 10.1617/2351580052.011.
[104] KLEMM A J, SIKORA K S. The effect of superabsorbent polymers(SAP)on microstructure and mechanical properties of fly ash cementitious mortars[J]. Construction and Building Materials, 2013, 49: 134-143.
[105] MECHTCHERINE V, GORGES M, SVHROEFL C, et al. Effect of internal curing by using superabsorbent polymers(SAP)on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test[J]. Materials and Structures, 2014, 47: 541-562.
[106] SENFF L, MODOLO R C E, ASCENSÃO G, et al.
Development of mortars containing superabsorbent polymer[J]. Construction and Building Materials, 2015, 95: 575-584.
[107] JENSEN O M, LURA P. Techniques and materials for internal water curing of concrete[J]. Materials and Structures, 2006, 39: 817-825.
[108] 姜玉丹,金祖权,陈永丰,等.高吸水树脂对混凝土水化及强度的影响[J].材料导报,2017,31(12):40-44,49.
JIANG Yu-dan, JIN Zu-qun, CHEN Yong-feng, et al. Effect of super-absorbent polymer on hydration and compressive strength of concrete[J]. Materials Reports, 2017, 31(12): 40-44, 49.(in Chinese)
[109] 王振兴,母 涛,张文进.SAP自养护材料对混凝土力学性能及孔结构的影响[J].居业,2018(12):2-3.
WANG Zhen-xing, MU Tao, ZHANG Wen-jin. The influence of SAP self-curing material on the mechanical properties and pore structure of concrete[J]. Create Living, 2018(12): 2-3.(in Chinese)
[110] 逢鲁峰.掺高吸水树脂内养护高性能混凝土的性能和作用机理研究[D].北京:中国矿业大学,2013.
FENG Lu-feng. Study on the performance and mechanism of internal curing high-performance concrete with super absorbent polymer[D]. Beijing: China University of Mining and Technology, 2013.(in Chinese)
[111] POURJAVADI A, FAKOORPOOR S M, KHALOO A, et al. Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles[J]. Materials and Design, 2012, 42: 94-101.
[112] 李铁军,孟云芳,陈燕飞.超吸水聚合物自养护混凝土试验研究[J].宁夏工程技术,2011,10(2):148-152.
LI Tie-jun, MENG Yun-fang, CHEN Yan-fei. Experimental study of super-absorbent polymer internal curing concrete[J]. Ningxia Engineering Technology, 2011, 10(2): 148-152.(in Chinese)
[113] BEUSHAUSEN H, GILLMER M. The use of superabsorbent polymers to reduce cracking of bonded mortar overlays[J]. Cement and Concrete Composites, 2014, 52: 1-8.
[114] BEUSHAUSEN H, GILLMER M, ALEXANDER M. The influence of superabsorbent polymers on strength and durability properties of blended cement mortars[J]. Cement and Concrete Composites, 2014, 52: 73-80.
[115] CRAEYE B, DE SCHUTTER G. Experimental evaluation of mitigation of autogenous shrinkage by means of a vertical dilatometer for concrete[C]∥CRC Press. Eight International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures. Leiden: CRC Press, 2008: 909-914.
[116] 王 嘉.高吸水性树脂对超高性能混凝土性能的影响[D].长沙:湖南大学,2012.
WANG Jia. The effects of super absorbent polymer on the performance of ultra high performance concrete[D]. Changsha: Hunan University, 2012.(in Chinese)
[117] CUSSON D, LOUNIS Z, DAIGLE L. Benefits of internal curing on service life and life-cycle cost of high-performance concrete bridge decks—a case study[J]. Cement and Concrete Composites, 2010, 32: 339-350.
[118] 孙庆合,魏永起,孟云芳,等.超吸水聚合物混凝土抗渗性能的研究[J].新型建筑材料,2009,36(6):68-71.
SUN Qing-he, WEI Yong-qi, MENG Yun-fang, et al. Study on impermeability of super absorption polymer concrete[J]. New Building Materials, 2009, 36(6): 68-71.(in Chinese)
[119] HASHOLT M T, JENSEN O M. Chloride migration in
concrete with superabsorbent polymers[J]. Cement and Concrete Composites, 2015, 55: 290-297.
[120] 张力冉,孔祥明,邢 锋,等.高吸水树脂内养护混凝土的氯离子渗透及碳化性能[J].河南科技大学学报(自然科学版),2019,40(1):60-65.
ZHANG Li-ran, KONG Xiang-ming, XING Feng, et al. Chloride ion invasion and carbonation property of internal cured concrete with super-absorbent polymer[J]. Journal of Henan University of Science and Technology(Natural Science), 2019, 40(1): 60-65.(in Chinese)
[121] 田 园.内养护高强混凝土抗冻融和抗盐冻性能研究[D].郑州:华北水利水电大学,2019.
TIAN Yuan. Study on freeze-thaw resistance and salt freezing performance of internal curing high strength concrete[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019.(in Chinese)
[122] 王德志,孟云芳,韩静云.超吸水聚合物内养护对混凝土抗冻性的影响[J].混凝土与水泥制品,2010(1):1-3.
WANG De-zhi, MENG Yun-fang, HAN Jing-yun. Effects of internal curing caused by super absorbent polymer on the frost resistance[J]. China Concrete and Cement Products, 2010(1): 1-3.(in Chinese)
[123] 吴文选.内养护混凝土的微观结构及其性能研究[D].武汉:武汉理工大学,2010.
WU Wen-xuan. Research on microstructure and properties of internal curing concrete[D]. Wuhan: Wuhan University of Technology, 2010.(in Chinese)
[124] 丁以兵,詹炳根,黄其海,等.自养护作用下的高性能混凝土抗冻与抗渗性能[J].合肥工业大学学报(自然科学版),2007,30(5):603-606.
DING Yi-bing, ZHAN Bing-gen, HUANG Qi-hai, et al. Study of the frost resistance and impermeability of high-performance concrete under self-curing[J]. Journal of Hefei University of Technology(Natural Science), 2007, 30(5): 603-606.(in Chinese)
[125] 蔡永涛.超强吸水性树脂SAP混凝土抗冻性能的研究[D].济南:山东建筑大学,2011.
CAI Yong-tao. The research on the frost resistance of concrete with super absorbent polymer[D]. Jinan: Shandong Jianzhu University, 2011.(in Chinese)
[126] LURA P, BREUGEL K V. Effect of size of lightweight aggregate particles on volume changes of lightweight aggregate concrete at early ages[J]. Innovations and Developmentsin Concrete Materials and Construction, 2002, DOI: 10.1680/iadicmac.31791.0063.
[127] BENTZ D P, JENSEN O M. Mitigation strategies for
autogenous shrinkage cracking[J]. Cement and Concrete Composites, 2004, 26: 677-685.
[128] CRAEYE B, COCKAERTS G, MAEIJER P K D. Improving freeze-thaw resistance of concrete road infrastructure by means of superabsorbent polymers[J]. Infrastructures, 2018, 3(4): 1-14.
[129] MIGNON A, SNOECK D, DUBRUEL P, et al. Crack
mitigation in concrete: superabsorbent polymers as key to success?[J]. Materials, 2017, 10(3): 237.
[130] MECHTCHERINE V. Use of superabsorbent polymers(SAP)as concrete additive[J]. RILEM Technical Letters, 2016, 1: 81-81.
[131] HASHOLT M T, JENSEN O M, LAUSTSEN S.
Superabsorbent polymers as a means of improving frost resistance of concrete[J]. Advances in Civil Engineering Materials, 2015, 4(1): 237-256.
[132] RANGARAJU P R, OLEK J, DIAMOND S. An investigation into the influence of inter-aggregate spacing and the extent of the ITZ on properties of Portland cement concretes[J]. Cement and Concrete Research, 2010, 40(11): 1601-1608.
[133] LYU Zhen-hua, SHEN Ai-qin, HE Zi-ming, et al. Absorption characteristics and shrinkage mitigation of superabsorbent polymers in pavement concrete[J]. International Journal of Pavement Engineering, 2020, DOI: 10.1080/10298436.2020.1742334.
[134] LEE H X D, WONG H S, BUENFELD N R. Self-sealing of cracks in concrete using superabsorbent polymers[J]. Cement and Concrete Research, 2016, 79: 194-208.
[135] OLAWUYI B J, BOSHOFF W P. Influence of SAP content and curing age on air void distribution of high performance concrete using 3D volume analysis[J]. Construction and Building Materials, 2017, 135: 580-589.
[136] BRÜDERN A E, MECHTCHERINE V. Multifunctional use of SAP in strain-hardening cement-based composites[C]∥RILEM Publication SARL. International RILEM Conferenceon Use of Superabsorbent Polymers and other New Additives in Concrete. Lyngby: RILEM Publication SARL, 2010: 11-22.
[137] 曹长柱,衣丽娇,王会新.SAP内养护混凝土强度和收缩性能的应用研究[J].建筑技术,2017,48(10):1067-1069.
CAO Chang-zhu, YI Li-jiao, WANG Hui-xin. Application of strength and shrinkage of concrete in SAP[J]. Architecture Technology, 2017, 48(10): 1067-1069.(in Chinese)

Memo

Memo:
-
Last Update: 2021-09-01