[1] 薛晨荣,尹 东,李桂芹,等.道路收费站的识别研究[J].计算机仿真,2009,26(2):225-228.
XUE Chen-rong, YIN Dong, LI Gui-qin, et al. A study of toll station recognition[J]. Computer Simulation, 2009, 26(2): 225-228.(in Chinese)
[2] 李 剑,梅乐翔,高 薪,等.基于卫星遥感图像的收费站位置自动识别与校核[J].中国交通信息化,2019(7):109-110,116.
LI Jian, MEI Le-xiang, GAO Xin, et al. Automatic recognition and verification of toll station location based on satellite remote sensing images[J]. China ITS Journal, 2019(7): 109-110, 116.(in Chinese)
[3] 刘 晟,王卫星,王珊珊,等.模糊航空图像中的道路自动检测方法[J].交通运输工程学报,2015,15(4):110-117.
LIU Sheng, WANG Wei-xing, WANG Shan-shan, et al. Automatic detection method of roads from fuzzy aerial images[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 110-117.(in Chinese)
[4] WANG Min, ZHANG Si-qi. Road extraction from high-spatial-resolution remotely sensed imagery by combining multi-profile analysis and extended Snakes model[J]. International Journal of Remote Sensing, 2011, 32(21): 6349-6365.
[5] HEIPKE C, MAYER H, WIEDEMANN C, et al.
Evaluation of automatic road extraction[J]. International Archives of Photogrammetry and Remote Sensing, 1997, 32: 151-160.
[6] 李 珣,刘 瑶,李鹏飞,等.基于Darknet框架下YOLO v2算法的车辆多目标检测方法[J].交通运输工程学报,2018,18(6):142-158.
LI Xun, LIU Yao, LI Peng-fei, et al. Vehicle multi-target detection method based on YOLO v2 algorithm under darknet framework[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 142-158.(in Chinese)
[7] ZHOU J, GAO D S, ZHANG D. Moving vehicle detection for automatic traffic monitoring[J]. IEEE Transactions on Vehicular Technology, 2007, 56(1): 51-59.
[8] LEITLOFF J, HINZ S, STILLA U. Vehicle detection in very high resolution satellite images of city areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2795-2806.
[9] KARANTZALOS K, PARAGIOS N. Recognition-driven 2D competing priors towards automatic and accurate building detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 47(1): 133-144.
[10] OK A O, SENARAS C, YUKSEL B. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 51(3): 1701-1717.
[11] AHMADI S, ZOEJ M J V, EBADI H, et al. Automatic
urban building boundary extraction from high resolution aerial images using an innovative model of active contours[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(3): 150-157.
[12] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[13] BASSANI M, MUSSONE L. Experimental analysis of
operational data for roundabouts through advanced image processing[J]. Journal of Traffic and Transportation Engineering(English Edition), 2020, 7(4): 482-497.
[14] DWIVEDI N, SINGH D K, KUSHWAHA D S. Weapon classification using deep convolutional neural network[C]∥IEEE. 2019 IEEE Conference on Information and Communication Technology. New York: IEEE, 2019: 9066227.
[15] 沙爱民,童 峥,高 杰.基于卷积神经网络的路表病害识别与测量[J].中国公路学报,2018,31(1):1-10.
SHA Ai-min, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10.(in Chinese)
[16] 刘占文,赵祥模,李 强,等.基于图模型与卷积神经网络的交通标志识别方法[J].交通运输工程学报,2016,16(5):122-131.
LIU Zhan-wen, ZHAO Xiang-mo, LI Qiang, et al. Traffic sign recognition method based on graphical model and convolutional neural network[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 122-131.(in Chinese)
[17] XU Yong-yang, XIE Zhong, FENG Ya-xing, et al. Road extraction from high-resolution remote sensing imagery using deep learning[J]. Remote Sensing, 2018, 10(9): 1461.
[18] GONG Li-xia, WANG Chao, WU Fan, et al. Earthquake-induced building damage detection with post-event sub-meter VHR TerraSAR-X staring spotlight imagery[J]. Remote Sensing, 2016, 8(11): 887.
[19] YANG Chuan, WANG Zheng-hong. An ensemble Wasserstein generative adversarial network method for road extraction from high resolution remote sensing images in rural areas[J]. IEEE Access, 2020, 8: 174317-174324.
[20] CHEN Zheng-chao, LU Kai-xuan, GAO Lian-ru, et al. Automatic detection of track and fields in China from high-resolution satellite images using multi-scale-fused single shot multibox detector[J]. Remote Sensing, 2019, 11(11): 1377.
[21] JI Shun-ping, YU Da-wen, SHEN Chao-yong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352.
[22] GONG Peng, LI Xue-cao, ZHANG Wei. 40-year(1978-2017)human settlement changes in China reflected by impervious surfaces from satellite remote sensing[J]. Science Bulletin, 2019, 64(11): 756-763.
[23] TONG Xin-yi, LU Qi-kai, XIA Gui-song. Large-scale land cover classification in GaoFen-2 satellite imagery[C]∥IEEE.38th Annual IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2018: 3599-3602.
[24] WU Qiong, ZHONG Ruo-fei, ZHAO Wen-ji, et al. Land-cover classification using GF-2 images and airborne lidar data based on Random Forest[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2410-2426.
[25] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]∥IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
[26] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
[27] REDMON J, FARHADI A. YOLO v3: an incremental improvement[R]. Ithaca: Cornell University, 2018.
[28] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]∥Springer. 14th European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
[29] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[30] GIRSHICK R. Fast R-CNN[C]∥IEEE. 15th IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1440-1448.
[31] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥IEEE. 27th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014,580-587.
[32] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 936-944.
[33] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]∥ICLR. 3rd International Conference on Learning Representations. New Orleans: ICLR, 2015: 1-14.
[34] 王俊强,李建胜,周学文,等.改进的SSD算法及其对遥感影像小目标检测性能的分析[J].光学学报,2019,39(6):0628005.
WANG Jun-qiang, LI Jian-sheng, ZHOU Xue-wen, et al. Improved SSD algorithm and its performance analysis of small target detection in remote sensing images[J]. Acta Optica Sinica, 2019, 39(6): 0628005.(in Chinese)
[35] ZHAI She-ping, SHANG Ding-rong, WANG Shu-huan, et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE Access, 2020, 8: 24344-24357.