|Table of Contents|

Analysis of factors affecting vehicle driving condition based on road test in Chongqing(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2021年02期
Page:
150-158
Research Field:
载运工具运用工程
Publishing date:

Info

Title:
Analysis of factors affecting vehicle driving condition based on road test in Chongqing
Author(s):
WU Sheng-li1 XING Wen-ting2 SHAO Yi-ming1 JIAN Xiao-chun1 ZHAO Shu-en3
(1. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 2. School of Management Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; 3. School of Mechanotronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
Keywords:
vehicle engineering driving condition fuel economy emission characteristic projection pursuit dynamic clustering genetic algorithm
PACS:
U467.1
DOI:
10.19818/j.cnki.1671-1637.2021.02.013
Abstract:
The vehicle road test method was used, and the vehicle driving status data were collected through the VBOX, an exhaust gas collection system, and a gyroscope. Based on the method of projection pursuit dynamic clustering, combined with the NSGA-Ⅱ method with an elite control strategy, different parameter indexes were processed, and the influence degrees of parameters on automotive fuel economy and emission characteristics were quantitatively analyzed. The change rules of influencing characteristics of different parameters under specific working conditions were studied. Research result shows that in all driving conditions, the weight of the impact of acceleration on the fuel economy is 65.52%, the weight of the impact on the VSP characteristic is 35.03%, and the impact weight of the turning radius on the VSP characteristic is 37.86%. When the vehicle speed is less than 10 km·h-1, the turning radius has the greatest impact on the fuel economy, and its impact weight is 80.74%. The acceleration has the greatest impact on the VSP characteristic, and its impact weight is 82.82%. When the vehicle speed is 10-40 km·h-1, the acceleration has the greatest impact on the fuel economy and VSP characteristic, and its impact weights are 34.01% and 48.59%, respectively. When the vehicle speed is greater than 40 km·h-1, the slope has the greatest impact on the fuel economy, and its impact weight is 75.59%. Vehicle speed has the greatest impact on the VSP characteristic, with an impact weight of 80.17%. When the vehicle is in a downhill condition, the weight of the slope's impact on the fuel economy is 69.84%, and the weight of the speed's impact on the VSP characteristic is 56.37%. When the vehicle is in an uphill condition, the impact weights of acceleration on the fuel economy and VSP characteristic are 54.62% and 94.24%, respectively. A quantitative analysis of the impact weights of different factors on fuel economy and VSP characteristic not only provides practical support for improving them, but also provides an important theoretical basis for intelligent vehicle control algorithms. 11 figs, 31 refs.

References:

[1] 罗佳鑫,崔健超,谭建伟,等.基于 WLTC 和 NEDC 循环的轻型车氨排放特性研究[J].汽车工程,2019,41(5):493-498.
LUO Jia-xin, CUI Jian-chao, TAN Jian-wei, et al. A research on ammonia emission characteristics of light-duty vehicles based on WLTC and NEDC cycles[J]. Automotive Engineering, 2019, 41(5): 493-498.(in Chinese)
图10 不同坡度对燃油经济性的影响
Fig.10 Influences of different slopes on fuel economy图11 不同坡度对VSP特性的影响
Fig.11 Influences of different slopes on VSP characteristics[2] 高继东,秦孔建,梁荣亮,等.实际道路工况和法规工况下中型柴油机排放特性的对比分析[J].吉林大学学报(工学版),2012,42(1):33-38.
GAO Ji-dong, QIN Kong-jian, LIANG Rong-liang, et al. Comparative analysis of medium-duty diesel engine emissions under BJCBC and ETC[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(1): 33-38.(in Chinese)
[3] LI T, CHEN X, YAN Z. Comparison of fine particles emissions of light-duty gasoline vehicles from chassis dynamometer tests and on-road measurements[J]. Atmospheric Environment, 2013, 68: 82-91.
[4] 姜 平,石 琴,陈无畏,等.基于小波分析的城市道路行驶工况构建的研究[J].汽车工程,2011,33(1):70-73.
JIANG Ping, SHI Qin, CHEN Wu-wei, et al. A research on the construction of city road driving cycle based on wavelet analysis[J]. Automotive Engineering, 2011, 33(1): 70-73.(in Chinese)
[5] 郭家琛,姜 衡,雷世英,等.城市道路汽车行驶工况构建方法[J].交通运输工程学报,2020,20(6):197-209.
GUO Jia-chen, JIANG Heng, LEI Shi-ying, et al. Vehicle driving cycle construction method of urban roads[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 197-209.(in Chinese)
[6] 展亮亮,张廷志,钟汶君,等.加氢催化生物柴油对GCI发动机燃烧与排放影响[J].内燃机学报,2020,38(2):119-125.
ZHAN Liang-liang, ZHANG Ting-zhi, ZHONG Wen-jun, et al. Effect of hydrogenation catalyzed biodiesel on combustion and emissions of GCI engines[J]. Transactions of CSICE, 2020, 38(2): 119-125.(in Chinese)
[7] 赵玉伟,王小琛,牛天林,等.掺混聚甲氧基二甲醚对中国第六阶段标准柴油机燃烧与排放特性的影响[J].西安交通大学学报,2020,54(3):28-34.
ZHAO Yu-wei, WANG Xiao-chen, NIU Tian-lin, et al. Effects of PODEn additions on combustion and emission characteristics of a China-Ⅵ standard diesel engine[J]. Journal of Xi'an Jiaotong University, 2020, 54(3): 28-34.(in Chinese)
[8] ADAMS C A, LOEPER P, KRIEGER R, et al. Effects of biodiesel-gasoline blends on gasoline direct-injection compression ignition(GCI)combustion[J]. Fuel, 2013, 111(9): 784-790.
[9] PUTRASARI Y, LIM O. A study on combustion and emission of GCI engines fueled with gasoline-biodiesel blends[J]. Fuel, 2017, 189(10): 141-154.
[10] 董红召,徐勇斌,陈 宁.基于 IVE 模型的杭州市机动车实际行驶工况下排放因子的研究[J].汽车工程,2011,33(12):1034-1038.
DONG Hong-zhao, XU Yong-bin, CHEN Ning. A research on the vehicle emission factors of real world driving cycle in Hangzhou City based on IVE model[J]. Automotive Engineering, 2011, 33(12): 1034-1038.(in Chinese)
[11] 韩亚欣,谭建伟,杨 佳,等.WLTC 循环下汽油车氨排放影响因素分析[J].环境科学研究,2019,32(4):654-661.
HAN Ya-xin, TAN Jian-wei, YANG Jia, et al. Analysis of factors affecting ammonia emission from gasoline vehicles under WLTC cycle[J]. Research of Environmental Sciences, 2019, 32(4): 654-661.(in Chinese)
[12] 胡志远,林骠骑,黄文明,等.B10 餐厨废弃油脂制生物柴油公交车应用性能[J].交通运输工程学报,2018,18(6):73-81.
HU Zhi-yuan, LIN Biao-qi, HUANG Wen-ming, et al. Application performance of buses fueled with waste cooking oil-based B10 biodiesel[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 73-81.(in Chinese)
[13] 禹文林,葛蕴珊,王 欣,等.混合动力汽车实际道路行驶排放特性研究[J].汽车工程,2018,40(10):1139-1145.
YU Wen-lin, GE Yun-shan, WANG Xin, et al. A research on the real driving emission characteristics of hybrid electric vehicles[J]. Automotive Engineering, 2018, 40(10): 1139-1145.(in Chinese)
[14] NÜESCH T, CEROFOLINI A, MANCINI G, et al. Equivalent consumption minimization strategy for the control of real driving NOx emissions of a diesel hybrid electric vehicle[J]. Energies, 2014, 7(5): 3148-3178.
[15] ZHANG L, HU X, QIU R, et al. Comparison of real-world emissions of LDGVs of different vehicle emission standards on both mountainous and level roads in China[J]. Transportation Research Part D: Transport and Environment, 2019, 69(4): 24-39.
[16] CHONG H S, KWON S, LIM Y, et al. Real-world fuel
consumption, gaseous pollutants, and CO2 emission of light-duty diesel vehicles[J]. Sustainable Cities and Society, 2020, 53: 1-11.
[17] CHONG H S, PARK Y, KWON S, et al. Analysis of real driving gaseous emissions from light-duty diesel vehicles[J]. Transportation Research Part D:Transport and Environment, 2018, 65: 485-499.
[18] LUJÁN J, BERMDEZ V, DOLZ V, et al. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system(PEMS)[J]. Atmospheric Environment, 2017, 174: 112-121.
[19] YANG Z, LIU Y, WU L, et al. Real-world gaseous emission characteristics of Euro 6b light-duty gasoline- and diesel-fueled vehicles[J]. Transportation Research Part D: Transport and Environment, 2020, 78: 1-11.
[20] 单 飞,王国伟.基于行驶工况的单车燃油消耗微观模型[J].公路与汽运,2011(6):31-36.
SHAN Fei, WANG Guo-wei. Microscopic model of automotive fuel consumption based on driving conditions [J]. Highways and Automotive Applications, 2011(6): 31-36.(in Chinese)
[21] KWON S, PARK Y, PARK J, et al. Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system[J]. Science of the Total Environment, 2017, 576: 70-77.
[22] 何 仁,庄志华,郑吉平,等.运行参数对汽车燃油经济性影响程度的区间分析方法[J].交通运输工程学报,2007,7(3):11-15.
HE Ren, ZHUANG Zhi-hua, ZHENG Ji-ping, et al. Interval mathematics analysis method of running parameters influence on automobile fuel economy[J]. Journal of Traffic and Transportation Engineering, 2007, 7(3): 11-15.(in Chinese)
[23] 张金辉,李克强,徐 彪,等.基于最小二乘法的车辆瞬态燃油消耗估计[J].汽车工程,2018,40(10):1151-1157.
ZHANG Jin-hui, LI Ke-qiang, XU Biao, et al. Estimation of vehicle instantaneous fuel consumption based on least square method[J]. Automotive Engineering, 2018, 40(10): 1151-1157.(in Chinese)
[24] STILLWATER T, KURANI K S, MOKHTARIAN P L. The combined effects of driver attitudes and in-vehicle feedback on fuel economy[J].Transportation Research Part D: Transport and Environment, 2017, 52: 277-288.
[25] BERNARDO T, BENJAMÍN P, SOPHIA B, et al. Fuel
economy optimization from the interaction between engine oil and driving conditions[J]. Tribology International, 2019, 138: 263-270.
[26] PITANUWAT S, SRIPAKAGORN A. An investigation of fuel economy potential of hybrid vehicles under real-world driving conditions in Bangkok[J]. Energy Procedia, 2015, 79: 1046-1053.
[27] ZAHABI S, MIRANDA-MORENO L, BARLA P, et al. Fuel economy of hybrid-electric versus conventional gasoline vehicles in real-world conditions: a case study of cold cities in Quebec, Canada[J]. Transportation Research Part D: Transport and Environment, 2014, 32: 184-192.
[28] MA H, XIE H, HUANG D, et al. Effects of driving style on the fuel consumption of city buses under different road conditions and vehicle masses[J]. Transportation Research Part D: Transport and Environment, 2015, 41: 205-216.
[29] 王顺久.水资源评价的投影寻踪动态聚类模型[J].四川大学学报(工程科学版),2008,40(5):22-26.
WANG Shun-jiu. Application of projection pursuit dynamic cluster model in water resources assessment[J]. Journal of Sichuan University(Engineering Science Edition), 2008, 40(5): 22-26.(in Chinese)
[30] 黄万友,程 勇,李 闯.基于车辆能耗状态的济南市道路行驶工况构建[J].西南交通大学学报,2012,47(6):989-995.
HUANG Wan-you, CHENG Yong, LI Chuang. Driving cycle construction of city road based on vehicle energy consumption in Jinan[J]. Journal of Southwest Jiaotong University, 2012, 47(6): 989-995.(in Chinese)
[31] 邢文婷,张宗益,吴胜利.页岩气开发对生态环境影响评价模型[J].中国人口·资源与环境,2016,26(7):137-144.
XING Wen-ting, ZHANG Zong-yi, WU Sheng-li. Quantitative evaluation model of ecological environment influence on shale gas development[J]. China Population, Resource and Environment, 2016, 26(7): 137-144.(in Chinese)

Memo

Memo:
-
Last Update: 2021-06-01