[1] 朱 冰,张培兴,赵 健,等.基于场景的自动驾驶汽车虚拟测试研究进展[J].中国公路学报,2019,32(6):1-19.
ZHU Bing, ZHANG Pei-xing, ZHAO Jian, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 1-19.(in Chinese)
[2] PEREIRA J, PREMEBIDA C, ASVADI A, et al. Test and evaluation of connected and autonomous vehicles in real-world scenarios[C]∥IEEE. 2019 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2019: 14-19.
[3] STRAUB J. Automated testing of a self-driving vehicle system[C]∥IEEE. 2017 IEEE AUTOTESTCON Conference. New York: IEEE, 2017: 1-6.
[4] TANG Li, SHI Yun-peng, HE Qing, et al. Performance test of autonomous vehicle lidar sensors under different weather conditions[J]. Transportation Research Record, 2020, 2674(1): 319-329.
[5] ZANG Shi-zhe, DING Ming, SMITH D, et al. The impact of adverse weather conditions on autonomous vehicles: how rain, snow, fog, and hail affect the performance of a self-driving car[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 103-111.
[6] 余卓平,邢星宇,陈君毅.自动驾驶汽车测试技术与应用进展[J].同济大学学报(自然科学版),2019,47(4):540-547.
YU Zhuo-ping, XING Xing-yu, CHEN Jun-yi. Review on automated vehicle testing technology and its application[J]. Journal of Tongji University(Natural Science), 2019, 47(4): 540-547.(in Chinese)
[7] 冯 洋,夏志龙,郭 安,等.自动驾驶软件测试技术研究综述[J].中国图象图形学报,2021,26(1):13-27.
FENG Yang, XIA Zhi-long, GUO An, et al. Survey of testing techniques of autonomous driving software[J]. Journal of Image and Graphics, 2021, 26(1): 13-27.(in Chinese)
[8] SHAO Yun-li, ZULKEFLI M A M, SUN Zong-xuan, et al. Evaluating connected and autonomous vehicles using a hardware-in-the-loop testbed and a living lab[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 121-135.
[9] CHEN Yu, CHEN Shi-tao, XIAO Tong, et al. Mixed test environment-based vehicle-in-the-loop validation—a new testing approach for autonomous vehicles[C]∥IEEE. 2020 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2020: 1283-1289.
[10] SZALAY Z, NYERGES Á, HAMAR Z, et al. Technical
specification methodology for an automotive proving ground dedicated to connected and automated vehicles[J]. Periodica Polytechnica Transportation Engineering, 2017, 45(3): 168-174.
[11] LI Li, WANG Xiao, WANG Kun-feng, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): eaaw4106.
[12] FAYAZI S A, VAHIDI A, LUCKOW A. A vehicle-in-the-loop(VIL)verification of an all-autonomous intersection control scheme[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 193-210.
[13] FENG Yi-heng, YU Chun-hui, XU Shao-bing, et al. An
augmented reality environment for connected and automated vehicle testing and evaluation[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1549-1554.
[14] 王润民,张心睿,王由道,等.自动驾驶封闭测试场地建设技术研究与实践[J].汽车实用技术, 2020(4): 33-36.
WANG Run-min, ZHANG Xin-rui, WANG You-dao, et al. Research and practice on construction technology of closed test field autonomous driving[J]. Automobile Applied Technology, 2020(4): 33-36.(in Chinese)
[15] 杨林瑶,陈思远,王 晓,等.数字孪生与平行系统:发展现状、对比及展望[J].自动化学报,2019,45(11):2001-2031.
YANG Lin-yao, CHEN Si-yuan, WANG Xiao, et al. Digital twins and parallel systems: state of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001-2031.(in Chinese)
[16] QUEIROZ R, BERGER T, CZARNECKI K. GeoScenario: an open DSL for autonomous driving scenario representation[C]∥IEEE. 2019 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2019: 287-294.
[17] HUANG Z, ARIEF M, LAM H, et al. Evaluation uncertainty in data-driven self-driving testing[C]∥IEEE. 2019 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2019: 1902-1907.
[18] KALRA N, PADDOCK S M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability?[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 182-193.
[19] FENG S, YAN X, SUN H, et al. Intelligent driving
intelligence test for autonomous vehicles with naturalistic and adversarial environment[J]. Nature Communications, 2021, 12(1): 1-14.
[20] CHANCE G, GHOBRIAL A, LEMAIGNAN S, et al. An agency-directed approach to test generation for simulation-based autonomous vehicle verification[C]∥IEEE. 2020 IEEE International Conference on Artificial Intelligence Testing. New York: IEEE, 2020: 31-38.
[21] MENZEL T, BAGSCHIK G, MAURER M. Scenarios for
development, test and validation of automated vehicles[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1821-1827.
[22] BATSCH F, KANARACHOS S, CHEAH M, et al. A taxonomy of validation strategies to ensure the safe operation of highly automated vehicles[J]. Journal of Intelligent Transportation Systems, 2020(6): 1-20.
[23] 周文帅,朱 宇,赵祥模,等.面向高速公路车辆切入场景的自动驾驶测试用例生成方法[J].汽车技术,2021(1):11-18.
ZHOU Wen-shuai, ZHU Yu, ZHAO Xiang-mo, et al. Vehicle cut-in test case generation methods for testing of autonomous driving on highway[J]. Automobile Technology, 2021(1): 11-18.(in Chinese)
[24] HUANG Z, LAM H, LEBLANC D J, et al. Accelerated
evaluation of automated vehicles using piecewise mixture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(9): 2845-2855.
[25] HUANG Z, LAM H, ZHAO D. An accelerated testing
approach for automated vehicles with background traffic described by joint distributions[C]∥IEEE. 20th International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 933-938.
[26] 余荣杰,田 野,孙 剑.高等级自动驾驶汽车虚拟测试:研究进展与前沿[J].中国公路学报,2020,33(11):125-138.
YU Rong-jie, TIAN Ye, SUN Jian. Highly automated vehicle virtual testing: a review of recent developments and research frontiers[J]. China Journal of Highway and Transport, 2020, 33(11): 125-138.(in Chinese)
[27] RIEDMAIER S, PONN T, LUDWIG D, et al. Survey on
scenario-based safety assessment of automated vehicles[J]. IEEE Access, 2020, 8: 87456-87477.
[28] GO B K, CARROLL B J M. The blind men and the elephant: views of scenario-based system design[J]. Interactions, 2004, 11(6): 44-53.
[29] LI Li, HUANG Wu-ling, LIU Yue-hu, et al. Intelligence
testing for autonomous vehicles: a new approach[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(2): 158-166.
[30] ULBRICH S, MENZEL T, RESCHKA A, et al. Defining and substantiating the terms scene, situation, and scenario for automated driving[C]∥IEEE. 18th IEEE International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 982-988.
[31] ELROFAI H, PAARDEKOOPER J, GELDER E, et al.
Scenario-based safety validation of connected and automated driving[R]. Helmond: TNO, 2018.
[32] ROCKLAGE E, KRAFT H, KARATAS A, et al. Automated scenario generation for regression testing of autonomous vehicles[C]∥IEEE. 20th IEEE International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 476-483.
[33] MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles[C]∥ IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1821-1827.
[34] BAGSCHIK G, MENZEL T, MAURER M. Ontology based scene creation for the development of automated vehicles[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1813-1820.
[35] SCHIEMENTZ M. Test case variation and execution[R].
Berlin: Research Project PEGASUS, 2019.
[36] THORN E, KIMMEL S, CHAKA M. A framework for
automated driving system testable cases and scenarios[R]. Washington DC: NHTSA, 2018.
[37] KANG Y, YIN H, BERGER C. Test your self-driving algorithm: an overview of publicly available driving datasets and virtual testing environments[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2):171-185.
[38] 李一兵,孙岳霆,徐成亮.基于交通事故数据的汽车安全技术发展趋势分析[J].汽车安全与节能学报,2016,7(3):241-253.
LI Yi-bing, SUN Yue-ting, XU Cheng-liang. Developing trends of automotive safety technology: an analysis based on traffic accident data[J]. Journal of Automotive Safety and Energy, 2016, 7(3): 241-253.(in Chinese)
[39] 韩大双,马志雄,朱西产,等.用于自动驾驶汽车的汽车-骑车人事故场景分析[J].汽车安全与节能学报,2020,11(2):220-226.
HAN Da-shuang, MA Zhi-xiong, ZHU Xi-chan, et al. Car-cyclist accident scene analysis for autopilot vehicles[J]. Journal of Automotive Safety and Energy, 2020, 11(2): 220-226.(in Chinese)
[40] OTTE D, FACIUS T. Accident typology comparisons between pedelecs and conventional bicycles[J]. Journal of Transportation Safety and Security, 2020, 12(1): 116-135.
[41] SCANLON J M, SHERONY R, GABLER H C. Earliest
sensor detection opportunity for left turn across path opposite direction crashes[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(1): 62-70.
[42] 胡 林,方胜勇,黄 晶,等.基于逻辑回归的二轮车-汽车碰撞事故深度分析[J].汽车工程,2016,38(11):1288-1293.
HU Lin, FANG Sheng-yong, HUANG Jing, et al. In-depth analysis on cycle-vehicle crash accident based on logistic regression[J]. Automotive Engineering, 2016, 38(11): 1288-1293.(in Chinese)
[43] HITOSUGI M, TOKUDOME S. Injury severity of occupants in lateral collisions in standard and small vehicles: analysis of ITARDA's in-depth investigation data[J]. International Journal of Crashworthiness, 2011, 16(6): 657-663.
[44] VIVO G, DALMASSO P, VERNACCHIA F. The European integrated project SAFESPOT——how ADAS applications co-operate for the driving safety[C]∥IEEE. 2007 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2007: 624-629.
[45] DIOS E, FERRER A, HILL J, et al. Towards a global and harmonized database for in-depth accident investigation in Europe: the DaCoTa project[J]. Wireless Personal Communications, 2013, 68(4): 1633-1671.
[46] 曹 毅,周 华,肖凌云,等.基于NAIS数据库中视频信息的人-车碰撞事故特征分析[J].汽车安全与节能学报,2020,11(1):44-52.
CAO Yi, ZHOU Hua, XIAO Ling-yun, et al. Analysis of pedestrian-vehicle collision accident characteristics based on the video information from NAIS database[J]. Journal of Automotive Safety and Energy, 2020, 11(1): 44-52.(in Chinese)
[47] International Transport Forum. Road Safety Annual Report 2018[R]. Paris: OECD Publishing, 2018.
[48] LENARD J, BADEA-ROMERO A, DANTON R. Typical
pedestrian accident scenarios for the development of autonomous emergency braking test protocols[J]. Accident Analysis and Prevention, 2014, 73: 73-80.
[49] NITSCHE P, THOMAS P, STUETZ R, et al. Pre-crash
scenarios at road junctions: a clustering method for car crash data[J]. Accident Analysis and Prevention, 2017, 107: 137-151.
[50] SUI Bo, ZHOU Sheng-qi, ZHAO Xiao-hua, et al. An
overview of car-to-two-wheeler accidents in China: guidance for AEB assessment[C]∥NHTSA. The 25th International Technical Conference on the Enhanced Safety of Vehicles. Washington DC: NHTSA, 2017: 1-12.
[51] SCANLON J M, SHERONY R, GABLER H C. Earliest
sensor detection opportunity for left turn across path opposite direction crashes[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(1): 62-70.
[52] SANDER U, LUBBE N. The potential of clustering methods to define intersection test scenarios: assessing real-life performance of AEB[J]. Accident Analysis and Prevention, 2018, 113: 1-11.
[53] 胡 林,易 平,黄 晶,等.基于真实事故案例的自动紧急制动系统两轮车测试场景研究[J].汽车工程,2018,40(12):1435-1446,1453.
HU Lin, YI Ping, HUANG Jing, et al. A research on test scenes of two-wheeled vehicles for automatic emergency braking system based on real accident cases[J]. Automotive Engineering, 2018, 40(12): 1435-1446, 1453.(in Chinese)
[54] 徐向阳,周兆辉,胡文浩,等.基于事故数据挖掘的AEB路口测试场景[J].北京航空航天大学学报,2020,46(10):1817-1825.
XU Xiang-yang, ZHOU Zhao-hui, HU Wen-hao, et al. Intersection test scenarios for AEB based on accident data mining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1817-1825.(in Chinese)
[55] ZHANG Lan-fang, CHEN Chen, ZHANG Jia-yan, et al.
Modeling lane-changing behavior in freeway off-ramp areas from the shanghai naturalistic driving study[J]. Journal of Advanced Transportation, 2018, 2018: 1-10.
[56] DINGUS T, KLAUER S G, NEALE V L, et al. The 100-car naturalistic driving study, phase Ⅱ——results of the 100-car field experiment[R]. Washington DC: NHTSA, 2006.
[57] LEBLANC D, BEZZINA D, TIERNAN T, et al. Functional requirements for integrated vehicle-based safety systems(IVBSS)—light vehicle platform[R]. Ann Arbor: University of Michigan Transportation Research Institute, 2008.
[58] RUSSELL S M, BLANCO M, ATWOOD J, et al. Naturalistic study of level 2 driving automation functions[R]. Washington DC: NHTSA, 2018.
[59] HUANG X, ZHAO D, PENG H. Empirical study of DSRC performance based on safety pilot model deployment data[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2619-2628.
[60] BÄRGMAN J, SVANBERG E. Sweden-Michigan naturalistic field operational test(SeMiFOT)phase 1: WP 3 data management, final report[R]. Göteborg: Chalmers University of Technology, 2010.
[61] WILMINK I, BENMIMOUN M, NOORT M V, et al.
euroFOT: large scale field operational test-impact assessment [C]∥ITS America. 16th ITS World Congress and Exhibition on Intelligent Transport Systems and Services. Washington DC: ITS America, 2009: 1-3.
[62] BARNARD Y, UTESCH F, NES N V, et al. The study design of UDRIVE: the naturalistic driving study across Europe for cars, trucks and scooters[J]. European Transport Research Review, 2016, 8(2): 1-10.
[63] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1229-1235.
[64] 朱西产,魏昊舟,马志雄.基于自然驾驶数据的跟车场景潜在风险评估[J].中国公路学报,2020,33(4):169-181.
ZHU Xi-chan, WEI Hao-zhou, MA Zhi-xiong. Assessment of the potential risk in car-following scenario based on naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33(4): 169-181.(in Chinese)
[65] 王雪松,杨敏明.基于自然驾驶数据的变道切入行为分析[J].同济大学学报(自然科学版),2018,46(8):1057-1063.
WANG Xue-song, YANG Min-ming. Cut-in behavior analyses based on naturalistic driving data[J]. Journal of Tongji University(Natural Science), 2018, 46(8): 1057-1063.(in Chinese)
[66] 刘 生.智能网联汽车驾驶场景数据采集的研究及应用[J].汽车纵横,2018(8):74-75.
LIU Sheng. Research and application of data collection of intelligent networked vehicle driving scene[J]. Auto Review, 2018(8): 74-75.(in Chinese)
[67] 王雪松,孙 平,张晓春,等.基于自然驾驶数据的高速公路跟驰模型参数标定[J].中国公路学报,2020,33(5):132-142.
WANG Xue-song, SUN Ping, ZHANG Xiao-chun, et al. Calibrating car-following models on freeway based on naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33(5): 132-142.(in Chinese)
[68] YANG Min-ming, WANG Xue-song, MOHAMMED Q.
Examining lane change gap acceptance, duration and impact using naturalistic driving data[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 317-331.
[69] 王雪松,朱美新,邢祎伦.基于自然驾驶数据的避撞预警对跟车行为影响[J].同济大学学报(自然科学版),2016,44(7):1045-1051.
WANG Xue-song, ZHU Mei-xin, XING Yi-lun. Impact of collision warning system on car-following behavior based on naturalistic driving data[J]. Journal of Tongji University(Natural Science), 2016, 44(7): 1045-1051.(in Chinese)
[70] 王雪松,朱美新.基于自然驾驶数据的中国驾驶人城市快速路跟驰模型标定与验证[J].中国公路学报,2018,31(9):129-137.
WANG Xue-song, ZHU Mei-xin. Calibrating and validating car-following models on urban expressways for Chinese drivers using naturalistic driving data[J]. China Journal of Highway and Transport, 2018, 31(9): 129-137.(in Chinese)
[71] 吴 斌,朱西产,沈剑平,等.基于自然驾驶数据的危险评估算法研究[J].汽车工程,2017,39(8):907-914.
WU Bin, ZHU Xi-chan, SHEN Jian-ping, et al. A study on risk assessment algorithm based on natural driving data[J]. Automotive Engineering, 2017, 39(8): 907-914.(in Chinese)
[72] 吴 斌,朱西产,沈剑平,等.基于自然驾驶研究的直行追尾危险场景诱导因素分析[J].同济大学学报(自然科学版),2018,46(9):1253-1260.
WU Bin, ZHU Xi-chan, SHEN Jian-ping, et al. Analysis of causation of rear-end incidents based on naturalistic driving study[J]. Journal of Tongji University(Natural Science), 2018, 46(9): 1253-1260.(in Chinese)
[73] 吴 斌,朱西产,沈剑平.基于自然驾驶数据的驾驶员紧急制动行为特征[J].同济大学学报(自然科学版),2018,46(11):1514-1519,1535.
WU Bin, ZHU Xi-chan, SHEN Jian-ping. Driver emergency braking behavior based on naturalistic driving data [J]. Journal of Tongji University(Natural Science), 2018, 46(11): 1514-1519, 1535.(in Chinese)
[74] 吴 斌,朱西产,沈剑平.基于自然驾驶数据的驾驶员紧急转向变道模型[J].同济大学学报(自然科学版),2019,47(11):1618-1625.
WU Bin, ZHU Xi-chan, SHEN Jian-ping. Analysis of driver emergency steering lane changing behavior model based on naturalistic driving data[J]. Journal of Tongji University(Natural Science), 2019, 47(11): 1618-1625.(in Chinese)
[75] ZHAO D, LAM H, PENG H, et al. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 595-607.
[76] HUANG Z, ZHAO D, LAM H, et al. Evaluation of
automated vehicles in the frontal cut-in scenario- an enhanced approach using piecewise mixture models[C]∥IEEE. IEEE International Conference on Robotics and Automation. New York: IEEE, 2017: 197-202.
[77] GELDER E D, PAARDEKOOPER J P. Assessment of automated driving systems using real-life scenarios[C]∥IEEE. 2017 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2017: 589-594.
[78] YAO Wen, ZENG Qi-qi, LIN Yu-ping, et al. On-road vehicle trajectory collection and scene-based lane change analysis: part Ⅱ[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(1): 206-220.
[79] 张 强,黄俊富,张胜根,等.基于自然驾驶数据的APS系统测试评价场景研究[C]∥中国汽车工程学会.2018中国汽车工程学会年会.北京:中国汽车工程学会,2018:266-270.
ZHANG Qiang, HUANG Jun-fu, ZHANG Sheng-gen, et al. Study of test and evaluation scenario for assisted parking system based on China-FOT[C]∥China-SAE. 2018 China-SAE Congress. Beijing: China-SAE, 2018: 266-270.(in Chinese)
[80] 刘 颖,贺锦鹏,刘卫国,等.自动紧急制动系统行人测试场景的研究[J].汽车技术,2014(3):35-39.
LIU Ying, HE Jin-peng, LIU Wei-guo, et al. Research on test scenarios for AEB pedestrian system[J]. Automobile Technology, 2014(3): 35-39.(in Chinese)
[81] HAUER F, SCHMIDT T, HOLZMULLER B, et al. Did we test all scenarios for automated and autonomous driving systems?[C]∥IEEE. 2019 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2019: 2950-2955.
[82] HALLERBACH S, XIA Y, EBERLE U, et al. Simulation-based identification of critical scenarios for cooperative and automated vehicles[J]. SAE International, 2018, 1(2): 93-106.
[83] KIM B, MASUDA T, SHIRAISHI S. Test specification and generation for connected and autonomous vehicle in virtual environments[J]. ACM Transactions on Cyber-Physical Systems, 2019, 4(1): 1-26.
[84] MASUDA S, NAKAMURA H, KAJITANI K. Rule-based searching for collision test cases of autonomous vehicles simulation[J]. IET Intelligent Transport Systems, 2018, 12(9): 1088-1095.
[85] ZHENG Xiao-kun, LIANG Hua-wei, YU Biao, et al. Rapid generation of challenging simulation scenarios for autonomous vehicles based on adversarial test[C]∥IEEE. 2020 IEEE International Conference on Mechatronics and Automation. New York: IEEE, 2020: 1166-1172.
[86] WEN M, PARK J, CHO K. A scenario generation pipeline for autonomous vehicle simulators[J]. Human-centric Computing and Information Sciences, 2020, 10(1): 1-15.
[87] XIA Qin, DUAN Jian-lin, GAO Feng, et al. Automatic
generation method of test scenario for ADAS based on complexity[C]∥SAE. SAE 2017 Intelligent and Connected Vehicles Symposium. Warrendale: SAE, 2017: 1-9.
[88] 舒 红,袁 康,修海林,等.自动驾驶汽车基础测试场景构建研究[J].中国公路学报,2019,32(11):245-254.
SHU Hong, YUAN Kang, XIU Hai-lin, et al. Construction of basic test scenarios of automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(11): 245-254.(in Chinese)
[89] WAGNER S, GROH K, KUHBECK T, et al. Using time-to-react based on naturalistic traffic object behavior for scenario-based risk assessment of automated driving[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1521-1528.
[90] ZOFKA M R, KUHNT F, KOHLHAAS R, et al. Data-driven simulation and parametrization of traffic scenarios for the development of advanced driver assistance systems[C]∥IEEE. 2015 18th International Conference on Information Fusion, New York: IEEE, 2015: 1422-1428.
[91] MULLINS G E, STANKIEWICZ P G, HAWTHORNE R C, et al. Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles[J]. Journal of Systems and Software, 2018, 137: 197-215.
[92] ZHAO D, HUANG X, PENG H, et al. Accelerated evaluation of automated vehicles in car-following maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 733-744.
[93] LANGNER J, BACH J, RIES L, et al. Estimating the
uniqueness of test scenarios derived from recorded real-world-driving-data using autoencoders[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1860-1866.
[94] TATAR M. Enhancing ADAS test and validation with automated search for critical situations[C]∥DSA. DSC 2015 Europe—Driving Simulation Conference and Exhibition. Boulogne-Billancourt: DSA, 2015: 1-4.
[95] LI Y, TAO J, WOTAWA F. Ontology-based test generation for automated and autonomous driving functions[J]. Information and Software Technology, 2020, 117: 106200.
[96] KOREN M, ALSAIF S, LEE R, et al. Adaptive stress
testing for autonomous vehicles[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1-7.
[97] FREMONT D J, KIM E, PANT Y V, et al. Formal
scenario-based testing of autonomous vehicles: from simulation to the real world[C]∥IEEE. 2020 IEEE International Conference on Intelligent Transportation Systems. New York: IEEE, 2020: 1-8.
[98] MULLINS G E, DRESS A G, STANKIEWICZ P G, et al. Accelerated testing and evaluation of autonomous vehicles via imitation learning[C]∥IEEE. 2018 IEEE International Conference on Robotics and Automation. New York: IEEE, 2018: 5636-5642.
[99] 赵祥模,承靖钧,徐志刚,等.基于整车在环仿真的自动驾驶汽车室内快速测试平台[J].中国公路学报,2019,32(6):124-136.
ZHAO Xiang-mo, CHENG Jing-jun, XU Zhi-gang, et al. An indoor rapid-testing platform for autonomous vehicle based on vehicle-in-the-loop simulation[J]. China Journal of Highway and Transport, 2019, 32(6): 124-136.(in Chinese)
[100] SHAO Y, ZULKEFLI M A M, SUN Z, et al. Evaluating connected and autonomous vehicles using a hardware-in-the-loop testbed and a living lab[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 121-135.
[101] LIU Fei-qi, ZHAO Fu-quan, LIU Zong-wei, et al. Can
autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation[J]. Energy Policy, 2019, 132: 462-473.
[102] KAMANN A, HASIRLIOGLU S, DORIC I, et al. Test
methodology for automotive surround sensors in dynamic driving situations[C]∥IEEE. 2017 IEEE 85th Vehicular Technology Conference: VTC-Spring. New York: IEEE, 2017: 1-6.
[103] 赵祥模,王文威,王润民,等.智能汽车整车在环测试台转向随动系统[J].长安大学学报(自然科学版),2019,39(6):116-126.
ZHAO Xiang-mo, WANG Wen-wei, WANG Run-min, et al. Turn following system of intelligent vehicle-in-loop test bench[J]. Journal of Chang'an University(Natural Science Edition), 2019, 39(6): 116-126.(in Chinese)