[1] MOHSEN A. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing[J]. Business Horizons, 2017, 60(5): 677-688.
[2] 郑 燕.3D打印硬组织用光固化复合树脂的制备及其低聚物的合成[D].青岛:青岛科技大学,2019.
ZHENG Yan. Preparation of 3D printed hard tissue photocurable composite resin and the synthesis of oligomers[D]. Qingdao: Qingdao University of Science and Technology, 2019.(in Chinese)
[3] 王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690-2698.
WANG Hua-ming. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.(in Chinese)
[4] 郜庆伟,赵 健,舒凤远,等.铝合金增材制造技术研究进展[J].材料工程,2019,47(11):32-42.
GAO Qing-wei, ZHAO Jian, SHU Feng-yuan, et al. Research progress in aluminum alloy additive manufacturing[J]. Journal of Materials Engineering, 2019, 47(11): 32-42.(in Chinese)
[5] ANNAMARIA G, MICHELE K, FILOMENO M, et al. Metal additive manufacturing in the commercial aviation industry: a review[J]. Journal of Manufacturing System, 2019, 53: 124-149.
[6] 工业和信息化部,国家发展和改革委员会,教育部,等.增材制造产业发展行动计划(2017~2020年)[J].铸造设备与工艺,2018(2):59-63.
Ministry of Industry and Information Technology, National Development and Reform Commission, Ministry of Education, et al. Additive manufacturing industry development action plan(2017-2020)[J]. Foundry Equipment and Technology, 2018(2): 59-63.(in Chinese)
[7] 康兴东,龚晓波,赵 建.城市轨道交通车辆轻量化车体结构材料的研究与应用[J].城市轨道交通研究,2020,23(6):177-180.
KANG Xing-dong, GONG Xiao-bo, ZHAO Jian.Research and application of lightweight carbody structural material for urban rail transit vehicle[J]. Urban Mass Transit, 2020, 23(6): 177-180.(in Chinese)
[8] 何凤英.浅谈3D打印技术[J].矿业工程,2016,14(3):66-69.
HE Feng-ying. Brief discussion on 3D print technology[J]. Mining Engineering, 2016, 14(3): 66-69.(in Chinese)
[9] 宋 哲.选区激光熔化钛合金的缺陷容限评价方法[D].成都:西南交通大学,2019.
SONG Zhe. The defect tolerance evaluation method for selective laser melted titanium alloys[D]. Chengdu: Southwest Jiaotong University, 2019.(in Chinese)
[10] 张文奇.AlSi10Mg合金粉末的选区激光熔化成形工艺及性能研究[D].武汉:华中科技大学,2018.
ZHANG Wen-qi. Investigation on process and performance of AlSi10Mg parts fabricated by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2018.(in Chinese)
[11] UZAN N E, SHNECK R, YEHESKEL O, et al. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting(AM-SLM)[J]. Materials Science and Engineering: A, 2017, 704: 229-237.
[12] MARTINA F, COLEGROVE P A, WILLIAMS S W, et al. Microstructure of interpass rolled wire+arc additive manufacturing Ti-6Al-4V components[J]. Metallurgical and Materials Transactions A, 2015, 46(12): 6103-6118.
[13] 余开斌.激光选区熔化成形AlSi10Mg合金的显微组织与力学性能研究[D].广州:华南理工大学,2018.
YU Kai-bin. Study on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[D]. Guangzhou: South China University of Technology, 2018.(in Chinese)
[14] 王小军.Al-Si合金的选择性激光熔化工艺参数与性能研究[D].北京:中国地质大学,2014.
WANG Xiao-jun. Process parameters and properties of selective laser melting Al-Si alloys[D]. Beijing: China University of Geosciences.(in Chinese)
[15] MURRL E, GAYTAN S M, CEYLAN A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting[J]. Acta Materialia, 2010, 58(5): 1887-1894.
[16] 郭 超,张平平,林 峰.电子束选区熔化增材制造技术研究进展[J].工业技术创新,2017,4(4):6-14.
GUO Chao, ZHANG Ping-ping, LIN Feng. Research advances of electron beam selective melting additive manufacturing technology[J]. Industrial Technology Innovation, 2017, 4(4): 6-14.(in Chinese)
[17] WANG Jun, PAN Zeng-xi, MA Yan, et al. Characterization of wire arc additively manufactured titanium aluminide functionally grade material:microstructure, mechanical properties and oxidation behaviour[J]. Materials and Science Engineering: A, 2018, 734: 110-119.
[18] WILLIAMS S W, MARTINA F, ADDISON A C, et al.
Wire+arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7): 641-647.
[19] 梁朝阳,张安峰,梁少端,等.高性能钛合金激光增材制造技术的研究进展[J].应用激光,2017,37(3):452-458.
LIANG Zhao-yang, ZHANG An-feng, LIANG Shao-duan, et al. Research developments of high-performance titanium alloy by laser additive manufacturing technology[J]. Applied Laser, 2017, 37(3): 452-458.(in Chinese)
[20] 唐洪奎,卓 君,马 宽,等.航空航天钛合金结构件增材制造技术[J].金属加工:热加工,2020(8):14-17.
TANG Hong-kui, ZHUO Jun, MA Kuan, et al. Additive manufacturing technology for titanium alloy structural parts in aerospace[J]. Metal Working, 2020(8): 14-17.(in Chinese)
[21] MARTINA F, DING J, WILLIAMS S, et al. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel[J]. Additive Manufacturing, 2019, 25: 545-550.
[22] CHAE H B, KIM C H, KIM J H, et al. The effect of
shielding gas composition in CO2 laser-gas metal arc hybrid welding[J]. Journal of Engineering Manufacture, 2008, 222(11): 1315-1324.
[23] STEFFEN N, SIEGFRIED S, ECKHARD B, et al. Laser
beam build-up welding: precision in repair, surface cladding, and direct 3D metal deposition[J]. Journal of Thermal Spray Technology, 2007, 16(3): 344-348.
[24] VAYSSETTE B, SAINTIER N, BRUGGER C, et al.
Surface roughness effect of SLM and EBM Ti-6Al-4V on multiaxial high cycle fatigue[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102581-1-31.
[25] LÖBER L, SCHIMANSKY F P, KÜHN U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology, 2014, 214(9): 1852-1860.
[26] 董 鹏,李忠华,严振宇,等.铝合金激光选区熔化成形技术研究现状[J].应用激光,2015,35(5):607-611.
DONG Peng, LI Zhong-hua, YAN Zhen-yu, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607-611.(in Chinese)
[27] VISCUSI A, LEITÃO C, RODRIGUES D M, et al. Laser
beam welded joints of dissimilar heat treatable aluminium alloys[J]. Journal of Materials Processing Technology, 2016, 236: 48-55.
[28] LI Neng, HUANG Shuai, ZHANG Guo-dong, et al. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science and Technology, 2019, 35(2): 242-269.
[29] 陈 伟,陈玉华,毛育青.铝合金增材制造技术研究进展[J].精密成形工程,2017,9(5):214-219.
CHEN Wei, CHEN Yu-hua, MAO Yu-qing. Research progress in additive manufacturing technology of aluminum alloy[J]. Journal of Netshape Forming Engineering, 2017, 9(5): 214-219.(in Chinese)
[30] 苗秋玉,刘妙然,赵 凯,等.铝合金增材制造技术研究进展[J].激光与光电子学进展,2018,55(1):58-66.
MIAO Qiu-yu, LIU Miao-ran, ZHAO Kai, et al. Research progress on technologies of additive manufacturing of aluminum alloys[J]. Laser and Optoelectronics Progress, 2018, 55(1): 58-66.(in Chinese)
[31] MARINA C, SERGIO L, TOMMASO P, et al. Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering[J]. Journal of Materials Processing Technology, 2016, 231: 326-335.
[32] 朱小刚,孙 靖,王联凤,等.激光选区熔化成形铝合金的组织、性能与倾斜面成形质量[J].机械工程材料,2017,41(2):77-80.
ZHU Xiao-gang, SUN Jing, WANG Lian-feng, et al. Microstructure, properties and inclined plane forming quality of aluminum alloy by selective laser melting[J]. Materials for Mechanical Engineering, 2017, 41(2): 77-80.(in Chinese)
[33] LEARY M, MAZUR M, ELAMBASSERIL J, et al. Selective laser melting(SLM)of AlSi12Mg lattice structures[J]. Materials and Design, 2016, 98: 344-357.
[34] SISTIAGA M L M, MERTENS R, VRANCKEN B, et al. Changing the alloy composition of Al7075 for better process ability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238: 437-445.
[35] LOH L E, LIU Z H, ZHANG D Q, et al. Selective laser melting of aluminium alloy using a uniform beam profile[J]. Virtual and Physical Prototyping, 2014, 9(1): 11-16.
[36] JAFARLOU D M, FERGUSON G, TSAKNOPOULOS, et al. Structural integrity of additively manufactured stainless steel with cold sprayed barrier coating under combined cyclic loading[J]. Additively Manufacturing, 2020, 35: 101338.
[37] WITKIN D B, PATEL D, ALBRIGHT T V, et al. Influence of surface conditions and specimen orientation on high cycle fatigue properties of Inconel 718 prepared by laser powder bed fusion[J]. International Journal of Fatigue, 2020, 132:105392.
[38] LI Neng, HUANG Shuai, ZHANG Guo-dong, et al. Processing in additive manufacturing on the new materials: a review[J]. Journal of Materials Science and Technology, 2019, 35: 242-269.
[39] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004, 6(5): 299-303.
[40] OTTO F, DLOUHAY'G A, SOMSEN C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755.
[41] FUJIEDA T, SHIRATORI H, KUWABARA K, et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials[J]. Materials Letters, 2015, 159: 12-15.
[42] FUJIEDA T, SHIRATORI H, KUWABARA K, et al.
CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment[J]. Materials Letters, 2017, 189: 148-151.
[43] SZOST B A, TERZI S, MARTINA F, et al. A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials and Design, 2016, 89: 559-567.
[44] MUKHERJEE T, ZHANG W, DEBROY T. An improved prediction of residual stresses and distortion in additive manufacturing[J]. Computational Materials Science, 2017, 126: 360-372.
[45] MEGAHED M, MINDT H W, N'DRI N, et al. Metal
additive-manufacturing process and residual stress modeling[J]. Integrating Materials and Manufacturing Innovation, 2016, 5(4): 1-33.
[46] ZHANG Ji-kui, WANG Xue-yuan, PADDEA S, et al. Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress[J]. Materials and Design, 2016, 90: 551-561.
[47] SHIPLEY H, MCDONNELL D, CULLETON M, et al.
Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review[J]. International Journal of Machine Tools Manufacture, 2018, 128: 1-20.
[48] LINDROOS M, PINOMAA T, ANTIKAINEN A, et al.
Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticity[J]. Additive Manufacturing, 2021, 38: 101819.
[49] HACKEL L, RANKIN J R. RUBENCHIK A, et al. Laser peening: a tool for additive manufacturing post-processing[J]. Additive Manufacturing, 2018, 24: 67-75.
[50] KALENTICS N, BOILLAT E, PEYRE P, et al. Tailoring residual stress profile of selective laser melted parts by laser shock peening[J]. Additive Manufacturing, 2017, 16: 90-97.
[51] PYKA G, KERCKHOFS G, PAPANTONIOU I, et al.
Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures[J]. Materials, 2013, 6(10): 4737-4757.
[52] TURNER B N, GOLD S A. A review of melt extrusion
additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness[J]. Rapid Prototyping Journal, 2015, 21(3): 250-261.
[53] STAVROULAKIS P, LEACH R K. Invited review article:
review of post-process optical form metrology for industrial-grade metal additive manufactured parts[J]. Review Science Instruments, 2016, 87(4): 1-5.
[54] VRANCKEN B, THIJS L, KRUTH J P, et al. Heat
treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177-185.
[55] PRASHANTH K G, SCUDINO S, KLAUSS H J, et al.
Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment[J]. Materials Science and Engineering: A, 2014, 590: 153-160.
[56] CHANDRAMOHAN P, BHERO S, VARACHIA F, et al. Laser additive manufactured Ti-6Al-4V alloy: heat treatment studies[J]. Transactions of Indian Institute of Metals, 2018, 71(3): 579-587.
[57] HERZOG D, SEYDA V, WYCISK E, et al. Additive
manufacturing of metals[J]. Acta Materials, 2016, 117: 371-92.
[58] SCHAROWSKY T, JUECHTER V, SINGER R F, et al. Influence of the scanning strategy on the microstructure and mechanical properties in selective electron beam melting of Ti-6Al-4V[J]. Advanced Engineering Materials, 2015, 17(11): 1573-1578.
[59] MAA C P, GUANA Y C, ZHOU W. Laser polishing of
additive manufactured Ti alloys[J]. Optics and Lasers in Engineering, 2017, 93: 171-177.
[60] BHADURIA D, PENCHEVA P, BATALA A, et al. Laser polishing of 3D printed mesoscale components[J]. Applied Surface Science, 2017, 405: 29-46.
[61] ACˇGERNAE·JUS O, KAMAT J, MARKOVIACˇG V, et al.
Surface laser processing of additive manufactured 1.2709 steel parts: preliminary study[J]. Advance in Materials Science Engineering, 2019, 2019: 1-9.
[62] LEUDERS S, THÖNE M, RIEMER A, et al. On the
mechanical behaviour of titanium alloy Ti-6Al-4V manufactured by selective lasermelting: fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48: 300-307.
[63] BAGHERI A, MAHTABI M J, SHAMSAEI N. Fatigue
behavior and cyclic deformation of additive manufactured NiTi[J]. Journal of Materials Processing Technology, 2018, 252: 440-453.
[64] 宋富阳,张 剑,郭会明,等.热等静压技术在镍基铸造高温合金领域的应用研究[J].材料工程,2021,49(1):65-74.
SONG Fu-yang, ZHANG Jian, GUO Hui-ming, et al. Research on application of hot isostatic pressing technology in the field of nickel-based cast superalloys[J]. Journal of Materials Engineering, 2021, 49(1): 65-74.(in Chinese)
[65] PORTOLÉS L, JORDÁ O, JORDÁ L, et al. A qualification procedure to manufacture and repair aerospace parts with electron beam melting[J]. Journal of Manufacturing Systems, 2016, 41: 65-75.
[66] CUNNINGHAM C, WIKSHÅLAND S, XU F, et al. Cost modelling and sensitivity analysis of wire and arc additive manufacturing[J]. Procedia Manufacturing, 2017, 11: 650-657.
[67] GU Jiang-long, DING Jia-luo, WILLIAMS S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy[J]. Materials Science and Engineering: A, 2016, 651: 18-26.
[68] COLEGROVE P A, DONOGHUE J, MARTINA F, et al.
Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components[J]. Scripta Materialia, 2017, 135: 111-118.
[69] COLEGROVE P A, COULES H E, FAIRMAN J, et al.
Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782-1791.
[70] GISARIO A, KAZARIAN M, MARTINA F, et al. Metal
additive manufacturing in the commercial aviation industry: a review[J]. Journal of Manufacturing Systems, 2019, 53: 124-149.
[71] YADOLLAHI A, SHAMSAEI N. Additive manufacturing of fatigue resistant materials: challenges and opportunities[J]. International Journal of Fatigue, 2017, 98: 14-31.
[72] GORELIK M. Additive manufacturing in the context of
structural integrity[J]. International Journal of Fatigue, 2017, 94: 168-177.
[73] STERLING A, SHAMSAEI N, TORRIES B, et al. Fatigue behaviour of additively manufactured Ti-6Al-4V[J]. Procedia Engineering, 2015, 133: 576-589.
[74] STERLING A J, TORRIES B, SHAMSAEI N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V[J]. Materials Science and Engineering: A, 2016, 655: 100-112.
[75] BENEDETTI M, TORRESANI E, LEONI M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 295-306.
[76] SUN Y, GULIZIA S, OH C, et al. The influence of as-built
surface conditions on mechanical properties of Ti-6Al-4V additively manufactured by selective electron beam melting[J]. JOM, 2016, 68(3): 791-798.
[77] EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598: 327-337.
[78] MURAKAMI Y. Material defects as the basis of fatigue
design[J]. International Journal of Fatigue, 2012, 41: 2-10.
[79] 万志鹏,王 宠,蒋文涛,等.孔洞缺陷对3D打印Ti-6Al-4V合金疲劳试样应力分布的影响[J].实验力学,2017,32(1):1-8.
WAN Zhi-peng, WANG Chong, JIANG Wen-tao, et al. On the effect of void defects on stress distribution of Ti-6Al-4V alloy fatigue specimen in 3D printing[J]. Journal of Experimental Mechanics, 2017, 32(1): 1-8.(in Chinese)
[80] TAMMAS-WILLIAMS S, WITHERS P J, TODD I, et al.
The influence of porosity on fatigue crack initiation in additively manufactured titanium components[J]. Scientific Reports, 2017, 7(1): 7308-1-13.
[81] SPIERINGS A B, STARR T L, WEGENER K. Fatigue
performance of additive manufactured metallic parts[J]. Rapid Prototyping Journal, 2013, 19(2): 88-94.
[82] TROSCH T, STRÖßNER J, VÖLKL R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Materials Letters, 2016, 164: 428-431.
[83] SHAMSAEI N, YADOLLAHI A, BIAN L, et al. An overview of direct laser deposition for additive manufacturing, Part Ⅱ: mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015, 8: 12-35.
[84] OLIVEIRA J P, SANTOS T G, MIRANDA R M. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice[J]. Progress in Materials Science, 2020, DOI: 10.1016/j.pmatsci.2019.100590.
[85] XIE C, WU S C, YU Y K, et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling[J]. Journal of Materials Processing Technology, 2021, 291: 117039.
[86] WITHERS P. Fracture mechanics by three-dimensional
crack-tip synchrotron X-ray microscopy[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, DOI: 10.1098/rsta.2013.0157.
[87] STOCK S R. Recent advances in X-ray microtomography
applied to materials[J]. International Materials Reviews, 2008, 53(3): 129-181.
[88] WU Sheng-chuan, XIAO Ti-qiao, WITHERS P J. The imaging of failure in structural materials by synchrotron X-ray micromography[J]. Engineering Fracture Mechanics, 2017, 182: 127-156.
[89] WU Sheng-chuan, YU Cheng, YU Pei-shi, et al. Corner
fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computedmicrography[J]. Materials Science and Engineering: A, 2016, 651: 604-614.
[90] WU Sheng-chuan, HU Ya-nan, DUAN Hao, et al. On the fatigue performance of laser hybrid welded high Zn 7000 alloys for next generation railway components[J]. International Journal of Fatigue, 2016, 91: 1-10.
[91] 吴圣川,吴正凯,胡雅楠,等.同步辐射光源四维原位成像助力材料微结构损伤高分辨表征[J].机械工程材料,2020,44(6):72-76.
WU Sheng-chuan, WU Zheng-kai, HU Ya-nan, et al. High-resolution characterization of microstructural damage in materials by synchrotron radiation source 4D in-situ tomography[J]. Materials for Mechanical Engineering, 2020, 44(6): 72-76.(in Chinese)
[92] 吴正凯,张 杰,吴圣川,等.同步辐射X射线原位三维成像在金属增材制件缺陷评价中的应用[J].无损检测,2020,42(7):46-50.
WU Zheng-kai, ZHANG Jie, WU Sheng-chuan, et al. Application of insitu three-dimensional synchrotron radiation X-ray tomography for defects evaluation of metal additive manufactured components[J]. Nondestructive Testing, 2020, 42(7): 46-50.(in Chinese)
[93] HU Ya-nan, WU Sheng-chuan, WITHERS P J, et al. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures[J]. Materials and Design, 2020, 192: 108708.
[94] HU Ya-nan, WU Sheng-chuan, WU Zheng-kai, et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2020, 136: 1-11.
[95] 罗琳胤,江 武,郝晓宁,等.民用飞机起落架激光/电子束增材制造技术应用研究[J].航空制造技术,2020,63(10):42-47.
LUO Lin-yin, JIANG Wu, HAO Xiao-ning, et al. Application of laser/electron beam additive manufacturing for civil aircraft landing gear[J]. Aeronautical Manufacturing Technology, 2020, 63(10): 42-47.(in Chinese)
[96] VANDOORNE R, GRÄBE P J. Stochastic modelling for the maintenance of life cycle cost of rails using Monte Carlo simulation[J]. Journal of rail and rapid transit, 2018, 232(4): 1240-1251.
[97] 王 平,盛宏威,冀凯伦,等.高速载运设施的无损检测技术应用和发展趋势[J].数据采集与处理,2020,35(2):195-209.
WANG Ping, SHENG Hong-wei, JI Kai-lun, et al. Application and development trend of non-destructive testing technology for high-speed transportation facilities[J]. Journal of Data Acquisition and Processing, 2020, 35(2): 195-209.(in Chinese)
[98] 周 磊.表面裂纹对铁路货车车轴性能的影响[D].成都:西南交通大学,2013.
ZHOU Lei. Effects of surface crack to freight train axle's performance[D]. Chengdu: Southwest Jiaotong University, 2013.(in Chinese)
[99] 李丛辰,陈文静,向 超,等.EA4T钢表面激光熔覆Fe314合金熔覆层的微观组织及性能[J].电焊机,2016,46(5):73-77.
LI Cong-chen, CHEN Wen-jing, XIANG Chao, et al. Microstructure and properties of Fe314 alloy cladding layer by laser cladding on EA4T steel[J]. Electric Welding Machine, 2016, 46(5): 73-77.(in Chinese)
[100] XU Zhong-wei, WU Sheng-chuan, WANG Xi-shu. Fatigue evaluation for high-speed railway axles with surface scratch[J]. International Journal of Fatigue, 2019, 123: 79-86.
[101] LIAO Zhen, YANG Bing, QIN Ya-hang, et al. Short fatigue crack behaviour of LZ50 railway axle steel under multi-axial loading in low-cycle fatigue[J]. International Journal of Fatigue, 2020, 132: 105366.
[102] YANG Bing, LIAO Zhen, QIN Ya-hang, et al. Comparative study on prediction effects of short fatigue crack propagation rate by two different calculation methods[J]. Journal of Physics Conference Series, 2017, 843(1): 012043.
[103] MONA S. Investigation of laser deposited wear resistant
coatings on railway axle steels[D]. Melbourne: RMIT University, 2013.
[104] 祝弘滨,刘 昱.金属3D打印技术在轨道交通装备领域的应用研究现状[J].现代城市轨道交通,2019(10):77-81.
ZHU Hong-bin, LIU Yu. Current research status of metal prototyping manufacturing(3D-printing)technology application in rail transit equipment[J]. Modern Urban Transit, 2019(10): 77-81.(in Chinese)
[105] 马明明,谭迈之,孙德祥,等.激光选区熔化成形高压接地开关传动件工艺与性能研究[J].电力机车与城轨车辆,2018,41(1):76-80.
MA Ming-ming, TAN Mai-zhi, SUN De-xiang, et al. Fabrication of transmission part in high-voltage earthing switch by selective laser melting[J]. Electric Locomotives and Mass Transit Vehicles, 2018, 41(1): 76-80.(in Chinese)
[106] 刘明磊,刘 芳,陆 兴.激光熔覆Ni30WC合金粉末修补42CrMo钢的研究[J].大连交通大学学报,2017,38(4):130-133.
LIU Ming-lei, LIU Fang, LU Xing. Repair of 42CrMo steel by laser cladding Ni30WC alloy powder[J]. Journal of Dalian Jiaotong University, 2017, 38(4): 130-133.(in Chinese)
[107] 殷晓耀.高速列车车轮踏面损伤分析及激光熔覆修复研究[D].南昌:华东交通大学,2016.
YIN Xiao-yao. Research of wheel tread damage and its laser cladding preparation in high-speed train[D]. Nanchang: East China Jiaotong University, 2016.(in Chinese)
[108] 陈常义,陈 江.铁路货车轮辐板孔裂纹激光再制造[J].中国表面工程,2011,24(2):92-96.
CHEN Chang-yi, CHEN Jiang. Remanufacturing railway wheels with web plate hole by laser cladding cracks[J]. China Surface Engineering, 2011, 24(2): 92-96.(in Chinese)
[109] 田 威,廖文和,刘长毅,等.基于绿色再制造的火车车钩裂纹激光修复和表面强化[J].应用激光,2008,28(2):103-107.
TIAN Wei, LIAO Wen-he, LIU Chang-yi, et al. Laser cladding and surface hardening of railcar coupler based on green remanufacture engineering[J]. Applied Laser, 2008, 28(2): 103-107.(in Chinese)
[110] 郭云龙,井国庆,张 辉.铁路工程中的3D打印:发展、挑战和展望[J].工业技术创新,2017,4(4):23-27.
GUO Yun-long, JING Guo-qing, ZHANG Hui. 3D printing in railway engineering: development, challenges and prospects[J]. Industrial Technology Innovation, 2017, 4(4): 23-27.(in Chinese)
[111] 曹 金,祝弘滨,鲍 飞,等.3D打印在轨道交通领域的研究现状及展望[J].机车车辆工艺,2018(3):10-11.
CAO Jin, ZHU Hong-bin, BAO Fei, et al. Status quo and prospect of 3D printing research for rail transit sector[J]. Locomotive and Rolling Stock Technology, 2018(3): 10-11.(in Chinese)