[1] 周平宇.高速动车组车轴材料及疲劳设计方法[J].铁道车辆,2009,47(2):29-31.
ZHOU Ping-yu. The axle material and fatigue design method for high speed multiple units[J]. Railway Vehicle, 2009, 47(2): 29-31.(in Chinese)
[2] 朱 静,顾家琳,周惠华,等.高速列车空心车轴国产化的选材和试制[J].中国铁道科学,2015,36(2):60-67.
ZHU Jing, GU Jia-lin, ZHOU Hui-hua, et al. Material selection and trial manufacture for localization of hollow axle for high speed train[J]. China Railway Science, 2015, 36(2): 60-67.(in Chinese)
[3] 徐忠伟,吴圣川,段 浩,等.考虑压装和实测动应力的含缺陷空心车轴剩余寿命评估[J].中国科学:技术科学,2017,47(6):656-665.
XU Zhong-wei, WU Sheng-chuan, DUAN Hao, et al. Fatigue crack growth life prediction of railway hollow axis with flaws under press fitting and measured dynamic stress spectrum[J]. Scientia Sinica: Technologica, 2017, 47(6): 656-665.(in Chinese)
[4] 周素霞.高速列车空心车轴损伤容限理论与方法研究[D].北京:北京交通大学,2010.
ZHOU Su-xia. Theory and method research on damage tolerance of the hollow axles of high speed trains[D]. Beijing: Beijing Jiaotong University, 2010.(in Chinese)
[5] ZERBST U, BERETTA S, KÖHLER G, et al. Safe life and damage tolerance aspects of railway axles—a review[J]. Engineering Fracture Mechanics, 2013, 98(1): 214-271.
[6] 沈彩瑜.铁道车辆转向架构架疲劳强度研究[D].成都:西南交通大学,2018.
SHEN Cai-yu. Fatigue strength analysis of the welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[7] LU Yao-hui, XIANG Peng-lin, DONG Ping-sha, et al.
Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames[J]. Engineering Failure Analysis, 2018, 89: 222-241.
[8] 孙 璐.高速列车转向架构架长期服役应力谱及损伤演化规律研究[D].北京:北京交通大学,2016.
SUN Lu. Study on stress spectrum and damage evolution law of the long-term service for high-speed EMU's bogie frame[D]. Beijing: Beijing Jiaotong University, 2016.(in Chinese)
[9] 段 浩.铁道车辆转向架构架疲劳寿命及损伤容限评价[D].成都:西南交通大学,2018.
DUAN Hao. Fatigue life and damage tolerance assessment on bogie frame of railway vehicles[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[10] 李丛珊.中国标准动车组动车转向架构架结构疲劳可靠性研究[D].北京:北京交通大学,2018.
LI Cong-shan. Structural fatigue reliability research on motor bogie frame of China standard EMUs[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)
[11] SCHIJVE J. Fatigue of Structures and Materials[M]. Dordrecht: Kluwer Academic Publishers, 2009.
[12] SURESH S. Fatigue of Materials[M]. Cambridge: Cambridge University Press, 1998.
[13] 刘 霞,王长生.车轴磁粉探伤机夹持装置的分析与改进[J].中国铁路,2012(10):74-76.
LIU Xia, WANG Chang-sheng. Improved holding device of railway axle used magnetic particle testing[J]. Chinese Railways, 2012(10): 74-76.(in Chinese)
[14] 蔡晓野.HXD3C型机车车轴磁粉检测磁痕显示分析[J].无损探伤,2018,42(2):40-42.
CAI Xiao-ye. Display analysis on magnetic mark of magnetic particle testing on HXD3C locomotive axles[J]. Nondestructive Testing Technology, 2018, 42(2): 40-42.(in Chinese)
[15] 丁 然,李 强.基于漏探概率的车轴探伤周期制定方法[J].中国铁道科学,2017,38(4):101-106.
DING Ran, LI Qiang. Method for detecting flaw detection period of axle based on missed detection probability[J]. China Railway Science, 2017, 38(4): 101-106.(in Chinese)
[16] 彭朝勇,高晓蓉,王 艾.车轴压装部相控阵超声波探伤的各向异性扩散去燥改进算法[J].中国铁道科学,2017,38(3):77-82.
PENG Chao-yong, GAO Xiao-rong, WANG Ai. An improved anisotropic diffusion denoising algorithm for phased array ultrasonic flaw detection of axle press-fit area[J]. China Railway Science, 2017, 38(3): 77-82.(in Chinese)
[17] 汤立新.一种空心车轴超声自动探伤图像合成显示方法[J].控制与信息技术,2018(5):51-55,61.
TANG Li-xin. A combined signal display method for hollow axle automated ultrasonic test system[J]. Control and Information Technology, 2018(5): 51-55, 61.(in Chinese)
[18] 刘志勇,彭朝勇.一种基于轴端耦合的实心车轴相控阵超声波探伤方法[J].机车电传动,2018(2):108-110.
LIU Zhi-yong, PENG Chao-yong. A method for solid axle flaw inspection based on axle end coupling by phased array ultrasonic technology[J]. Electric Drive for Locomotives, 2018(2): 108-110.(in Chinese)
[19] 周庆祥,傅 晔,詹发福,等.阵列涡流技术在车轴在役检测中的应用研究[J].金属加工(冷加工),2016(增1):399-400.
ZHOU Qing-xiang, FU Ye, ZHAN Fa-fu, et al. Applications of eddy current arrays to in-service axle detection[J]. Metal Processing(Cold Working), 2016(S1): 399-400.(in Chinese)
[20] 杜寅飞.基于脉冲涡流检测技术的车轴探伤系统的研究[D].天津:天津大学,2011.
DU Yin-fei. Research on semi-axle testing system based on pulsed eddy current testing technology[D]. Tianjin: Tianjin University, 2011.(in Chinese)
[21] SUN Zhen-guo, CAI Dong, ZOU Cheng, et al. A flexible arrayed eddy current sensor for inspection of hollow axle inner surfaces[J]. Sensors, 2016, 16(7): 952.
[22] 兰晓峰,张 渝.重载铁路钢轨相控阵探伤系统研究[J].仪器仪表学报,2019,40(12):47-55.
LAN Xiao-feng, ZHANG YU. Research on heavy haul railway inspection system based on the phased array technique[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 47-55.(in Chinese)
[23] 师睿鑫.基于图像处理的轮轴探伤系统对铁路安全的控制研究[J].中国安全科学学报,2018,28(增1):22-28.
SHI Rui-xin. Research on safety foundation control of wheel shaft flaw detection system based on image processing[J]. China Safety Science Journal, 2018, 28(S1): 22-28.(in Chinese)
[24] MAKINO T, SAKAI H, KOZUKA C, et al. Overview of
fatigue damage evaluation rule for railway axles in Japan and fatigue property of railway axle made of medium carbon steel[J]. International Journal of Fatigue, 2020, 132: 105361.
[25] LI Cun-hai, WU Sheng-chuan, ZHANG Jin-yuan, et al.
Determination of the fatigue P-S-N curves—a critical review and improved backward statistical inference method[J]. International Journal of Fatigue, 2020, 139: 105789.
[26] WU S C, LI C H, LUO Y, et al. A uniaxial tensile behavior based fatigue crack growth model[J]. International Journal of Fatigue, 2020, 131: 105324.
[27] LUO Yan, WU Sheng-chuan, ZHAO Xin, et al. Three-dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel[J]. Materials and Design, 2020, 195: 109001.
[28] HU Y N, WU S C, WU Z K, et al. A new approach to
correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2020, 136: 105584.
[29] WU S C, XU Z W, LIU Y X, et al. On the residual life
assessment of high-speed railway axles due to induction hardening[J]. International Journal of Rail Transportation, 2018, 6(4): 218-232.
[30] BATHIAS C. There is no infinite fatigue life in metallic
materials[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22(7): 559-565.
[31] SAKAI T, SATO Y, OGUMA N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(8/9): 765-773.
[32] 袁元豪.日本和欧洲铁路车轴标准的比较[J].铁道技术监督,2013,41(9):4-7.
YUAN Yuan-hao. Comparison of railway axle standards between Japan and Europe[J]. Railway Quality Control, 2013, 41(9): 4-7.(in Chinese)
[33] MAKINO T, KATO T, HIRAKAWA K. Review of the fatigue damage tolerance of high-speed railway axles in Japan[J]. Engineering Fracture Mechanics, 2011, 78: 810-825.
[34] 郑修麟,王 泓,鄢君辉,等.材料疲劳理论与工程应用[M].北京:科学出版社,2013.
ZHENG Xiu-lin, WANG Hong, YAN Jun-hui, et al. Fatigue Thoery and Engineering Applications of Materials[M]. Beijing: Science Press, 2013.(in Chinese)
[35] 李守新,翁宇庆,惠卫军,等.高强度钢超高周疲劳性能——非金属夹杂物的影响[M].北京:冶金工业出版社,2010.
LI Shou-xin, WENG Yu-qing, HUI Wei-jun, et al. Very High Cycle Fatigue Properties of High Strength Steels—Effects of Nonmetallic Inclusions[M]. Beijing: Metallurgical Industry Press, 2010.(in Chinese)
[36] BATHIAS C, PINEAU A. Fatigue of Materials and
Structures[M]. Hoboken: Wiley, 2013.
[37] SONSINO C M. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety[J]. International Journal of Fatigue, 2007, 29(12): 2246-2258.
[38] 洪友士,孙成奇,刘小龙.合金材料超高周疲劳的机理与模型综述[J].力学进展,2018,48:201801.
HONG You-shi, SUN Cheng-qi, LIU Xiao-long. A review on mechanism and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48: 201801.(in Chinese)
[39] 张继旺.高速列车车轴钢超长寿命疲劳可靠性及强度改善方法[D].成都:西南交通大学,2011.
ZHANG Ji-wang. Fatigue reliability behaviors of high-speed railway axle steel in very high cycle regime and methods for fatigue strengthen improvement[D]. Chengdu: Southwest Jiaotong University, 2011.(in Chinese)
[40] 钟群鹏,周 煜,张 峥,等.裂纹学[M].北京:高等教育出版社,2014.
ZHONG Qun-peng, ZHOU Yu, ZHANG Zheng, et al. Cracking[M]. Beijing: High Education Press, 2014.(in Chinese)
[41] 杨新华,陈传尧.疲劳与断裂(第二版)[M].武汉:华中科技大学出版社,2002.
YANG Xin-hua, CHEN Chuan-yao. Fatigue and Fracture(2nd edition)[M]. Wuhan: Huazhong University of Science and Technology Press, 2002.(in Chinese)
[42] BERETTA S, REGAZZI D. Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations[J]. International Journal of Fatigue, 2016, 86:13-23.
[43] 赵云生.日本新干线车轴淬火技术应用综述[J].国外铁道车辆,2011,48(5):9-12.
ZHAO Yun-sheng. Survey of application of the quenching technology of axles for Shinkansen in Japan[J]. Foreign Railway Vehicle, 2011, 48(5): 9-12.(in Chinese)
[44] HIROMICHI I, MAKOTO A, YASUO S, et al. Fracture mechanics evalution of fatigue tests using Shinkansen vehicle axles with artificial flaws created on their wheelsets[J]. The Japan Society of Mechanical Engineers, 1996, 62: 2527-2533.
[45] 邓铁松,吴 磊,凌 亮,等.轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J].计算机辅助工程,2015,24(1):12-17,21.
DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24(1): 12-17, 21.(in Chinese)
[46] 刘志远,张文康,高纯友,等.美国波士顿地铁轴箱内置式转向架结构设计[J].城市轨道交通研究,2019(3):162-165.
LIU Zhi-yuan, ZHANG Wen-kang, GAO Chun-you, et al. Development of bogie with inboard bearing for Boston Metro in America[J]. Urban Mass Transit, 2019(3): 162-165.(in Chinese)
[47] 李国栋,王文华,薛文根,等.内置轴箱式转向架轴箱轴承定位挡圈失效分析[J].轴箱,2019(9):6-8.
LI Guo-dong, WANG Wen-hua, XUE Wen-gen, et al. Failure analysis on positioning retaining rings of axle box bearings for built-in axle box type bogie[J]. Bearing, 2019(9): 6-8.(in Chinese)
[48] 王志明,陈晓峰,吴才香,等.轴箱内置式车辆走行部焊接构架及其疲劳强度分析[J].装备制造技术,2019(1):79-82.
WANG Zhi-ming, CHEN Xiao-feng, WU Cai-xiang, et al. Welded frame and fatigue strength analysis of running part of axle box built-in vehicle[J]. Equipment Manufacturing Technology, 2019(1): 79-82.(in Chinese)
[49] WU S C, LIU Y X, LI C H, et al. On the fatigue
performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176-191.
[50] 刘宇轩.内置轴箱式铁路车轴疲劳强度及损伤容限评价[D]. 成都:西南交通大学,2019.
LIU Yu-xuan. Fatigue strength and damage tolerance assessment on railway axle with inside axle boxes[D]. Chengdu: Southwest Jiaotong University, 2019.(in Chinese)
[51] 刘宇轩,吴圣川,李存海,等.轴箱内置型铁路车轴疲劳性能与寿命评估[J].交通运输工程学报,2019,19(3):100-108.
LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, et al. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108.(in Chinese)
[52] POKORNAY'G P, DLHAY'G P, PODUKA J, et al. Influence of heat treatment-induced residual stress on residual fatigue life of railway axles[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102732.
[53] REGAZZI D, BERETTA S, CARBONI M. An investigation about the influence of deep rolling on fatigue crack growth in railway axles made of a medium strength steel[J]. Engineering Fracture Mechanics, 2014, 131: 587-601.
[54] MAKOTO A, HIROMICHI I. Reliability analysis of Shinkansen vehicle axle using probabilistic fracture mechanics[J]. The Japan Society of Mechanical Engineers, 1994, 60: 46-51.
[55] MAKOTOA. Bayesian analysis for the results of fatigue test using full-scale models to obtain the accurate failure probabilities of the Shinkansen vehicle axle[J]. Reliability Engineering and System Safety, 2002, 75: 321-332.
[56] YAMAMOTO M, MAKINO K, ISHIDUKA H. Comparison of crack growth behaviour between full-scale railway axle and scaled specimen[J]. International Journal of Fatigue, 2016, 92: 159-165.
[57] NONAKA I, SETOWAKI S, ICHIKAWA Y. Effect of load frequency on high cycle fatigue strength of bullet train axle steel[J]. International Journal of Fatigue, 2014, 60: 43-47.
[58] MAKINO K, BIWA S. Influence of axle-wheel interface on ultrasonic testing of fatigue cracks in wheelset[J]. Ultrasonics, 2013, 53: 239-248.
[59] YAMAMOTO M, MAKINO K, ISHIDUKA H. Experimental validation of railway axle fatigue crack growth using operational loading[J]. Engineering Fracture Mechanics, 2019, 213: 142-152.
[60] HIROMICHI I, MASANOBU K, CHU S, et al. Evaluation of fatigue crack propagation property on the wheelseat of normalized axles for narrow gauge line vehicles[J]. Journal of the Society of Materials Science Japan, 2006, 55(6): 550-557.
[61] POKORNAY'G P, HUTAARˇG P, NÁHLÍK L. Residual fatigue
lifetime estimation of railway axles for various loading spectra[J]. Theoretical and Applied Fracture Mechanics, 2016, 82: 25-32.
[62] RIEGER M, MOSER C, BRUNNHOFER P, et al. Fatigue crack growth in full-scale railway axles-influence of secondary stresses and load sequence effects[J]. International Journal of Fatigue, 2020, 132: 105360.
[63] MAIERHOFER J, GANSER HP, SIMUNEK D, et al. Fatigue crack growth model including load sequence effects-model development and calibration for railway axle steels[J]. International Journal of Fatigue, 2020, 132: 105377.
[64] HANNEMANN R, KOSTER P, SANDER M. Fatigue crack growth in wheelset axles under bending and torsional loading[J]. International Journal of Fatigue, 2019, 118: 262-270.
[65] BERETTA S, CARBONI M, REGAZZI D. Load interaction effects in propagation lifetime and inspections of railway axles[J]. International Journal of Fatigue, 2016, 91: 423-433.
[66] AUERSCH L. Realistic axle load spectra from ground vibrations measured near railway lines[J]. International Journal of Rail Transportation, 2015, 3(4): 180-200.
[67] SMITH R A, HILLMANSEN S. A brief historical overview of the fatigue of railway axles[J]. Journal of Rail and Rapid Transit, 2004, 218(4): 267-277.
[68] CARBONI M, BERETTA S, MADIA M. Analysis of crack growth at R=-1 under variable amplitude loading on a steel for railway axles[J]. Journal of ASTM International, 2008, 5(7): JAI101648.
[69] SANDER M, RICHARD H A. Investigations on fatigue crack growth under variable amplitude loading in wheelset axles[J]. Engineering Fracture Mechanics, 2011, 78: 754-763.
[70] WATSON A S, TIMMIS K. A method of estimating railway axle stress spectra[J]. Engineering Fracture Mechanics, 2011, 78(5): 836-847.
[71] CERVELLO S. Fatigue properties of railway axles: new results of full-scale specimens from Euraxles project[J]. International Journal of Fatigue, 2016, 86: 2-12.
[72] FOLETTI S, BERETTA S, GURER G. Defect acceptability under full-scale fretting fatigue tests for railway axles[J]. International Journal of Fatigue, 2016, 86: 34-43.
[73] GOMEZ M J, CASTEJON C, GARCIA-PRADA J C. New
stopping criteria for crack detection during fatigue tests of railway axles[J]. Engineering Failure Analysis, 2015, 56: 530-537.
[74] LUKE M, VARFOLOMEEV I, LÜTKEPOHL K, et al.
Fatigue crack growth in railway axles: assessment concept and validation tests[J]. Engineering Fracture Mechanics, 2011, 78(5): 714-730.
[75] FILIPPINI M, LUKE M, VARFOLOMEEV I. Fatigue strength assessment of railway axles considering small-scale tests and damage calculations[J]. Procedia Structural Integrity, 2017, 4: 11-18.
[76] CARBONI M, BERETTA S. Effect of probability of detection upon the definition of inspection intervals for railway axles[J]. Journal of Rail and Rapid Transit, 2007, 221: 409-417.
[77] MÄDLER K, GEBURTIG T, ULLRICH D. An experimental approach to determining the residual lifetimes of wheelset axles on a full-scale wheel-rail roller test rig[J]. International Journal of Fatigue, 2016, 86: 58-63.
[78] TRAUPE M, JENNE S, LÜTKEPOHL K, et al. Experimental validation of inspection intervals for railway axles accompanying the engineering process[J]. International Journal of Fatigue, 2016, 86: 44-51.
[79] KAPPES W, HENTSCHEL D, OELSCHLAGELT. Potential improvements of the presently applied in-service inspection of wheelset axles[J]. International Journal of Fatigue, 2016, 86: 64-76.
[80] FAJKOS R, ZIMA R, STRNADEL B. Fatigue limit of
induction hardened railway axles[J]. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38: 1255-1264.
[81] HASSANI-GANGARAJ S M, CARBONI M, GUAGLIANO M. Finite element approach toward an advanced understanding of deep rolling induced residual stresses, and an application to railway axles[J]. Materials and Design, 2015, 83: 689-703.
[82] REGAZZI D, CANTINI S, CERVELLO S, et al. Improving fatigue resistance of railway axles by cold rolling: process optimisation and new experimental evidences[J]. International Journal of Fatigue, 2020, 137: 105603.
[83] BERETTA S, CARBONI M, FIORE G, et al. Corrosion-
fatigue of A1N railway axle steel exposed to rainwater[J]. International Journal of Fatigue, 2010, 32: 952-961.
[84] BERETTA S, CARBONI M, CONTE A L, et al. An
investigation of the effects of corrosion on the fatigue strength of AlN axle steel[J]. Journal of Rail and Rapid Transit, 2008, 222: 129-143.
[85] MANERHOFER J, SIMUNEK D, GANSER H P, et al.
Oxide induced crack closure in the near threshold regime The effect of oxide debris release[J]. International Journal of Fatigue, 2018, 117: 21-26.
[86] VOJTECK T, POKORNY P, KUBENA I, et al. Quantitative dependence of oxide-induced crack closure on air humidity for railway axle steel[J]. International Journal of Fatigue, 2019, 123: 213-224.
[87] SADANANDA K, VASUDEVAN A K. Analysis of pit to crack transition under corrosion fatigue and the safe-life approach using the modified Kitagawa-Takahashi diagram[J]. International Journal of Fatigue, 2020, 134: 105471.
[88] POKORNY P, VOJTECK T, NAHLIK L, et al. Crack closure in near-threshold fatigue crack propagation in railway axle steel EA4T[J]. Engineering Fracture Mechanics, 2017, 185: 2-19.
[89] BERETTA S, LO CONTE A, RUDLIN J, et al. From
atmospheric corrosive attack to crack propagation for A1N railway axles steel under fatigue[J]. Engineering Failure Analysis, 2015, 47: 252-264.
[90] SIMUNEK D, LEITNER M, RIEGER M, et al. Fatigue
crack growth in railway axle specimens—transferability and model validation[J]. International Journal of Fatigue, 2020, 137: 105603.
[91] GÄNSER H P, MAIERHOFER J, TICHY R, et al. Damage tolerance of railway axles-the issue of transferability revisited[J]. International Journal of Fatigue, 2016, 86: 52-57.
[92] DE FREITAS M, FRANCOIS D. Analysis of fatigue crack growth in rotary bend specimens and railway axles[J]. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18(2): 171-178.
[93] VARFOLOMEEV I, LUKE M, BURDACK M. Effect of
specimen geometry on fatigue crack growth rates for the railway axle material EA4T[J]. Engineering Fracture Mechanics, 2011, 78: 742-753.
[94] 刘志明,孙守光,缪龙秀.车轴裂纹扩展寿命的分析与计算方法[J].中国铁道科学,2008,29(3):89-94.
LIU Zhi-ming, SUN Shou-guang, MIAO Long-xiu. Analysis and calculation method of axle crack growth life[J]. China Railway Science, 2008, 29(3): 89-94.(in Chinese)
[95] 张俊清.高速列车空心车轴表面裂纹应力强度因子研究[D].北京:北京交通大学,2011.
ZHANG Jun-qing. Research on stress intensity factor of surface crack of high-speed train hollow axle[D]. Beijing: Beijing Jiaotong University, 2011.(in Chinese)
[96] 周素霞,李福胜,谢基龙,等.基于损伤容限的动车组车轴实测载荷谱等效应力评价[J].机械工程学报,2015,51(8):131-136.
ZHOU Su-xia, LI Fu-sheng, XIE Ji-long, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51(8): 131-136.(in Chinese)
[97] ZHAO Yong-xiang, HE Chao-ming, YANG Bing, et al.
Probabilistic models for long fatigue crack growth rates of LZ50 axle steel[J]. Applied Mathematics and Mechanics(English Edition), 2005, 26(8): 1093-1099.
[98] 包 陈,蔡力勋. LZ50车轴钢疲劳裂纹扩展试验研究[J]. 实验室研究与探索,2007,26(11):255-258.
BAO Chen, CAI Li-xun. Experimental study on fatigue crack propagation of LZ50 axle steels[J]. Research and Exploration in Laboratory, 2007, 26(11): 255-258.(in Chinese)
[99] 杨 冰,赵永翔.表面滚压对LZ50车轴钢疲劳短裂纹行为的影响[J].金属学报,2014,48(8):922-928.
YANG Bing, ZHAO Yong-xiang. Influence of surface rolling on short fatigue crack behavior for LZ50 axle steel[J]. Acta Metallurgica Sinica, 2014, 48(8): 922-928.(in Chinese)
[100] 赵永翔,何 忠.LZ50车轴钢的疲劳起裂阈值及强度[J].铁道学报,2012,34(11):37-42.
ZHAO Yong-xiang, HE Zhong. Fatigue cracking threshold and strength of railway LZ50 axle steel[J]. Journal of the China Railway Society, 2012, 34(11): 37-42.(in Chinese)
[101] WU S C, ZHANG S Q, XU Z W, et al. Cyclic plastic strain based damage tolerance for railway axles in China[J]. International Journal of Fatigue, 2016, 93: 64-70.
[102] 马利军.断裂力学的含缺陷车轴服役寿命评估方法研究[D].北京:北京交通大学,2016.
MA Li-jun. Study on service life evaluation of railway axle with flaws based on fracture mechanics[D]. Beijing: Beijing Jiaotong University, 2016.(in Chinese)
[103] 林浩博.高速动车组S38C车轴疲劳裂纹扩展特性及可靠性研究[D].北京:北京交通大学,2017.
LIN Hao-bo. Studies on the fatigue crack propagation characteristics and reliability of EMU high speed S38C axle[D]. Beijing: Beijing Jiaotong University, 2017.(in Chinese)
[104] 吴圣川,李存海,张 文,等.金属材料疲劳裂纹扩展机制与模型的研究进展[J].固体力学学报,2019,40(6):489-538.
WU Sheng-chuan, LI Cun-hai, ZHANG Wen, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 489-538.(in Chinese)
[105] 王玉光,吴圣川,李忠文,等.一种基于低周疲劳行为的含缺陷车轴剩余寿命模型[J].铁道学报,2018,40(11):27-32.
WANG Yu-guang, WU Sheng-chuan, LI Zhong-wen, et al. A low cycle fatigue characteristics based residual life prediction model for railway axles with flaws[J]. Journal of the China Railway Socienty, 2018, 40(11): 27-32.(in Chinese)
[106] WU S C, XU Z W, YU C, et al. A physically short fatigue crack growth approach based on low cycle fatigue properties[J]. International Journal of Fatigue, 2017, 103(6): 185-195.
[107] SHI K K, CAI L X, BAO C, et al. Structural fatigue crack growth on a representative volume element under cyclic strain behavior[J]. International Journal of Fatigue, 2015, 74(5): 1-6.
[108] SHI K K, CAI L X, BAO C, et al. Prediction of fatigue crack growth based on low cycle fatigue properties[J]. International Journal of Fatigue, 2014, 61(4): 220-225.
[109] WU S C, LUO Y, SHEN Z, et al. Collaborative crack
initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages[J]. Engineering Fracture Mechanics, 2020, 225: 106844.
[110] 吴圣川,徐忠伟,康国政,等.外物损伤对25CrMo4 合金车轴钢疲劳性能的影响[J].西南交通大学学报,2020,55(3):658-663.
WU Sheng-chuan, XU Zhong-wei, KANG Guo-zheng, et al. Influences of foreign object damage on fatigue strength of 25CrMo4 axle alloy steel[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 658-633.(in Chinese)
[111] LUO Y, WU S C, ZHAO X, et al. Three-dimensional
correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel[J]. Materials and Design, 2020, 195: 109001.
[112] XU Z W, WU S C, WANG X S. Fatigue evaluation for high-speed railway axles with surface scratch[J]. International Journal of Fatigue, 2019, 123: 79-86.
[113] WU S C, XU Z W, KANG G Z, et al. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue, 2018, 117: 90-100.
[114] 高杰维.表面凹坑缺陷对高速列车车轴钢疲劳性能影响研究[D].成都:西南交通大学,2017.
GAO Jie-wei. Research on influence of surface PIT defects on the fatigue property of high-speed train axle steel[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[115] 潘向南.S38C车轴冲击损伤疲劳性能研究[J].成都:西南交通大学,2018.
PAN Xiang-nan. Study on fatigue performance of impact damage on S38C axle[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[116] GAO J W, PAN X N, HAN J, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles[J]. International Journal of Fatigue, 2020, 139: 105746.
[117] LI X, ZHANG J W, YANG B, et al. Effect of micro-shot peening, conventional shot peening and their combination on fatigue property of EA4T axle steel[J]. Journal of Materials Processing Technology, 2020, 275: 116320.
[118] ZHANG J W, LI H, YANG B, et al. Fatigue properties and fatigue strength evaluation of railway axle steel: effect of micro-shot peening and artificial defect[J]. International Journal of Fatigue, 2020, 132: 105379.
[119] 罗 艳.异物致损合金钢EA4T车轴抗疲劳评估方法[D].成都:西南交通大学,2020.
LUO Yan. Fatigue resistance assessment of externally impacted railway EA4T axle steel[D]. Chengdu: Southwest Jiaotong University, 2020.(in Chinese)
[120] 秦庆斌.铁路客车铸造材料焊接构架疲劳性能及剩余寿命评估[D].成都:西南交通大学,2020.
QIN Qing-bin. Fatigue performance and residual life evaluation of welded bogie frame made of casting materials for railway passenger vehicle[D]. Chengdu: Southwest Jiaotong University, 2020.(in Chinese)
[121] LEE Y L, PAN J, HATHAWAY R, et al. Fatigue Testing and Analysis: Theory and Practice[M]. Amsterdam: Elsevier, 2005.
[122] 白 鑫,谢里阳,钱文学.基于样本聚集原理的疲劳可靠性评估方法及其在零部件上的应用[J].机械工程学报,2016,52(6):206-212.
BAI Xin, XIE Li-yang, QIAN Wen-xue. Fatigue probability evaluation method based on the principle of sample-polymerization[J]. Journal of Mechanical Engineering, 2016, 52(6): 206-212.(in Chinese)
[123] 李存海,吴圣川,刘宇轩.样本信息聚集原理改进及其在铁路车辆结构疲劳评定中的应用[J].机械工程学报,2019,55(4):42-53.
LI Cun-hai, WU Sheng-chuan, LIU Yu-xuan. Improved sample polymerization principle and the applications onto fatigue assessment of railway vehicle structures[J]. Journal of Mechanical Engineering, 2019, 55(4): 42-53.(in Chinese)
[124] 汪开忠,胡芳忠,陈世杰,等.高速列车车轴用DZ2钢的腐蚀疲劳性能[J].金属热处理,2019,44(4):81-85.
WANG Kai-zhong, HU Fang-zhong, CHEN Shi-jie, et al. Corrosion fatigue property of DZ2 steel for high speed train axle[J]. Heat Treatment of Metals, 2019, 44(4): 81-85.(in Chinese)
[125] 许佑顶,姚令侃.川藏铁路沿线特殊环境地质问题的认识与思考[J].铁道工程学报,2017(1):1-5.
XU You-ding, YAO Ling-kan. Some cognitions and thinkings about the specific geo-environmental problems along the Sichuan-Tibet Railway[J]. Journal of Railway Engineering Society, 2017(1): 1-5.(in Chinese)
[126] 吴 毅,尹鸿祥,孟 扬,等.高速列车车轴材料的低温高周疲劳性能[J].材料热处理学报,2019,40(4):54-61.
WU Yi, YIN Hong-xiang, MENG Yang, et al. High cycle fatigue properties of high speed axle materials at low temperature[J]. Transaction of Materials and Heat Treatment, 2019, 40(4): 54-61.(in Chinese)
[127] 任尊松,吕晓旭,李秋泽.典型缺陷车轴应力分布及对疲劳性能影响研究[J].北京交通大学学报,2020,44(1):57-63.
REN Zun-song, LYU Xiao-xu, LI Qiu-ze. Research on the stress distribution of axle with typical defects and its influence on fatigue performance[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 57-63.(in Chinese)
[128] 陈 玲,马 跃.EA4T车轴坯锻后表面开裂机理研究[J].铁道机车与动车,2020(4):34-37.
CHEN Ling, MA Yue. Study on surface cracking mechanism of EA4T axle blank after forging[J]. Railway Locomotive and Motor Car, 2020(4): 34-37.(in Chinese)
[129] 卜玮杰,高杰维,戴光泽,等.人工缺陷对S38C车轴钢疲劳极限的影响[J].机械工程材料,2020,44(5):16-20.
BU Wei-jie, GAO Jie-wei, DAI Guang-ze, et al. Effect of artificial defects on fatigue limit of S38C axle steel[J]. Materials for Mechanical Engineering, 2020, 44(5): 16-20.(in Chinese)
[130] 尹鸿祥,吴 毅,张关震,等.沟槽性缺陷对EA4T车轴钢疲劳性能影响规律研究[J].铁道技术监督,2019,47(8):24-30.
YIN Hong-xiang, WU Yi, ZHANG Guan-zhen, et al. The effects of groove defects on the fatigue performance of EA4T axle steel[J]. Railway Quality Control, 2019, 47(8): 24-30.(in Chinese)
[131] KLINGER C, BETTGE D. Axle fracture of an ICE3 high speed train[J]. Engineering Failure Analysis, 2013, 35: 66-81.
[132] RICE J R. Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear[J]. Journal of Applied Mechanics, 1967, 34: 287-298.
[133] KUJAWSKI D, ELLYIN F. On the size of plastic zone ahead of a crack-tip[J]. Engineering Fracture Mechanics, 1986, 25: 229-236.
[134] 宋 川,刘建华,彭金方,等.接触应力对车轴钢旋转弯曲微动疲劳寿命的影响[J].材料工程,2014(2):34-38.
SONG Chuan, LIU Jian-hua, PENG Jin-fang, et al. Effect of contact stress on rotating bending fretting fatigue life of railway axle steel[J]. Materials Engineering, 2014(2): 34-38.(in Chinese)
[135] 陈 刚,曾东方,张 艳,等.空心和实心车轴微动磨损行为的对比研究[J].安徽工业大学学报(自然科学版),2020,37(1):12-18.
CHEN Gang, ZENG Dong-fang, ZHANG Yan, et al. A comparative study of fretting wear behavior of hollow and solid railway axles[J]. Journal of Anhui University of Technology(Natural Science), 2020, 37(1): 12-18.(in Chinese)
[136] 王梦婕.DZ2车轴钢的切向微动磨损行为与冲击磨损行为研究[D].成都:西南交通大学,2019.
WANG Meng-jie. Research on fretting wear behavior and impact behavior of DZ2 axle steels[D]. Chengdu: Southwest Jiaotong University, 2019.(in Chinese)
[137] 平学成,赵辽翔.新型空心车轴轮对过盈配合微动疲劳特性分析[J].机械设计与制造,2014(7):116-119.
PING Xue-cheng, ZHAO Liao-xiang. Fretting fatigue characteristics of interference fit joints of wheel and shaft in a locomotive[J]. Machinery Design and Manufacture, 2014(7): 116-119.(in Chinese)
[138] SUNDE S L, BERTO F, HAUGENB. Predicting fretting fatigue in engineering design[J]. International Journal of Fatigue, 2018, 117: 314-326.
[139] NOWELL D, DINI D, HILLSDA. Recent developments in the understanding of fretting fatigue[J]. Engineering Fracture Mechanics, 2006, 73(2): 207-222.
[140] NESLADEK M, SPANIEL M, JURENKA J, et al. Fretting fatigue—experimental and numerical approaches[J]. International Journal of Fatigue, 2012, 44: 61-73.
[141] CHOI S J, CHO Y T. Fretting fatigue behavior in railway axle materials[J]. Journal of Mechanical Science and Technology, 2015, 29(1): 23-31.
[142] GURER G, GUR C H. Failure analysis of fretting fatigue
initiation and growth on railway axle press-fits[J]. Engineering Failure Analysis, 2018, 84: 151-166.
[143] SMITH R A. Fatigue of railway axles: a classic problem
revisited[J]. European Structural Integrity Society, 2000, 26: 173-181.
[144] 唐 凯,周留成,何卫峰,等.激光冲击强化对LZ50车轴钢疲劳性能影响试验研究[J].中国机械工程,2020,31(3):267-273.
TANG Kai, ZHOU Liu-cheng, HE Wei-feng, et al. Experimental study on influence of laser shock processing on fatigue performance of LZ50 axle steels[J]. China Mechanical Engineering, 2020, 31(3): 267-273.(in Chinese)
[145] 马天宇.高速动车组车轴表面强化层的疲劳性能研究[D].北京:北京交通大学,2018.
MA Tian-yu. The study on fatigue of high-speed EMU axle surface reinforcement layer[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)
[146] 王会英.高速列车车轴材料超声挤压强化技术研究[D].北京:北京交通大学,2015.
WANG Hui-ying. Research on the ultrasonic extrusion strengthening technology for hollow axle material of high speed train[D]. Beijing: Beijing Jiaotong University, 2015.(in Chinese)
[147] 熊 平,贺婷婷,丁志敏,等.提高铁路车轴疲劳性能的表面强化处理技术[J].电力机车与城轨车辆,2014,37(1):52-55.
XIONG Ping, HE Ting-ting, DING Zhi-min, et al. Technologies of surface hardening treatment for improving the fatigue property of railway axles[J]. Electric Locomotives and Mass Transit Vehicles, 2014, 37(1): 52-55.(in Chinese)
[148] 梁 晨,覃作祥,陆 兴.EA4T车轴钢的超声冲击表面强化[J].大连交通大学学报,2015,36(4):89-92.
LIANG Chen, QIN Zuo-xiang, LU Xing. Surface strengthening study of EA4T axle steel by ultrasonic impact treatment(UIT)[J]. Journal of Dalian Jiaotong University, 2015, 36(4): 89-92.(in Chinese)
[149] 蔡卫星,邓鸿剑,徐 锋.滚压强化技术在铁路车轴表面处理中的应用[J].机械,2018,45(4):52-55.
CAI Wei-xing, DENG Hong-jian, XU Feng. Application of rolling strengthening technology in surface treatment of railway axles[J]. Machinery, 2018, 45(4): 52-55.(in Chinese)
[150] 于 鑫,孙 杰,李世涛,等.滚压工艺对EA4T车轴表面质量完整性的影响及预测模型建立[J].中国表面工程,2014,27(5):87-95.
YU Xin, SUN Jie, LI Shi-tao, et al. Influence of burnishing process on surface quality integrity of EA4T axles and establishing of prediction model[J]. China Surface Engineering, 2014, 27(5): 87-95.(in Chinese)
[151] 任学冲,陈利钦,刘鑫贵,等.表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J].材料工程,2015,43(12):1-5.
REN Xue-chong, CHEN Li-qin, LIU Xin-gui, et al. Effects of surface ultrasonic rolling processing on fatigue properties of axle steel used on high speed train[J]. Journal of Materials Engineering, 2015, 43(12): 1-5.(in Chinese)
[152] 陈利钦,项 彬,任学冲,等.表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J].中国表面工程,2014,27(5):96-101.
CHEN Li-qin, XIANG B