[1] HAMMOND T R, PETERS D J. Estimating AIS coverage from received transmissions[J]. The Journal of Navigation, 2012, 65(3): 409-425.
[2] SHENG Pan, YIN Jing-bo. Extracting shipping route patterns by trajectory clustering model based on automatic identification system data[J]. Sustainability, 2018, 10(7): 1-13.
[3] 牟军敏,陈鹏飞,贺益雄,等.船舶AIS-轨迹快速自适应谱聚类算法[J].哈尔滨工程大学学报,2018,39(3):428-432.
MOU Jun-min, CHEN Peng-fei, HE Yi-xiong, et al. Fast self-tuning spectral clustering algorithm for AIS ship trajectory[J]. Journal of Harbin Engineering University, 2018, 39(3): 428-432.(in Chinese)
[4] ZHAO Liang-bin, SHI Guo-you. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition[J]. Ocean Engineering, 2019, 172: 456-467.
[5] ZHANG Shu-kai, SHI Guo-you, LIU Zheng-jiang, et al. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity[J]. Ocean Engineering, 2018, 155: 240-250.
[6] LI Song, ZHOU Jiang-hua, ZHANG Yuan-qiang. Research of vessel traffic safety in ship routeing precautionary areas based on navigational traffic conflict technique[J]. The Journal of Navigation, 2015, 68(3): 589-601.
[7] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15(6): 2218-2245.
[8] ZHAO Liang-bin, SHI Guo-you. A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm[J]. Ocean Engineering, 2018, 166: 37-46.
[9] ZHU Fei-xiang, MIAO Li-ming, LIU Wen. Research on vessel trajectory multi-dimensional compression algorithm based on Douglas-Peucker theory[J]. Applied Mechanics and Materials, 2014, 694: 59-62.
[10] 张树凯,刘正江,张显库,等.基于Douglas-Peucker算法的船舶AIS航迹数据压缩[J].哈尔滨工程大学学报,2015,36(5):595-599.
ZHANG Shu-kai, LIU Zheng-jiang, ZHANG Xian-ku, et al. A method for AIS track data compression based on Douglas-Peucker algorithm[J]. Journal of Harbin Engineering University, 2015, 36(5): 595-599.(in Chinese)
[11] ZHANG Shu-kai, LIU Zheng-jiang, CAI Yao, et al. AIS trajectories simplification and threshold determination[J]. The Journal of Navigation, 2016, 69(4): 729-744.
[12] VRIES G K D D, SOMEREN M V. Machine learning for vessel trajectories using compression, alignments and domain knowledge[J]. Expert Systems with Applications, 2012, 39(18): 13426-13439.
[13] SÁNCHEZ-HERES L F. Simplification and event identification for AIS trajectories: the equivalent passage plan method[J]. The Journal of Navigation, 2019, 72: 307-320.
[14] SINGH A K, AGGARWAL V, SAXENA P, et al. Performance analysis of trajectory compression algorithms on marine surveillance data[C]∥IEEE. 2017 International Conference on Advances in Computing, Communications and Informatics. New York: IEEE, 2017: 1074-1079.
[15] ZHENG Yu.Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3): 1-41.
[16] SUN Peng-hui, XIA Shi-xiong, YUAN Guan, et al. An overview of moving object trajectory compression algorithms[J]. Mathematical Problems in Engineering, 2016, 2016: 1-13.
[17] 高 邈,史国友,李伟峰.改进的Sliding Window在线船舶AIS轨迹数据压缩算法[J].交通运输工程学报,2018,18(3):218-227.
GAO Miao, SHI Guo-you, LI Wei-feng. Online compression algorithm of AIS trajectory data based on improved sliding window[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 218-227.(in Chinese)
[18] GAO Miao, SHI Guo-you. Ship spatio temporal key feature point online extraction based on AIS multi-sensor data using an improved sliding window algorithm[J]. Sensors, 2019, 19: 1-17.
[19] KEOGH E,CHU S, HART D, et al. An online algorithm for segmenting time series[C]∥IEEE. 2001 IEEE International Conference on Date Ming. New York: IEEE, 2001: 289-296.
[20] MERATNIA N, DE BY R A. Spatio temporal compression techniques for moving point objects[C]∥Springer. Advances in Database Technology—EDBT 2004. Berlin: Springer, 2004: 765-782.
[21] MENG Qing-bin, YU Xiao-qiang, YAO Chun-long, et al. Improvement of OPW-TR algorithm for compressing GPS trajectory data[J]. Journal of Information Processing Systems, 2017, 13(3): 533-545.
[22] MUCKELL J, OLSEN P W J, HWANG J H, et al. Compression of trajectory data: a comprehensive evaluation and new approach[J]. Geoinformatica, 2014, 18(3): 435-460.
[23] CAO Wei-quan, LI Yun-zhao. DOTS: an online and near-optimal trajectory simplification algorithm[J]. Journal of Systems and Software, 2017, 126: 34-44.
[24] POTAMIAS M, PATROUMPAS K, SELLIS T.Sampling trajectory streams with spatiotemporal criteria[C]∥IEEE. 18th International Conference on Scientific and Statistical Database Management. New York: IEEE, 2006: 275-284.
[25] LONG C, WONG R C W, JAGADISH H V. Direction-preserving trajectory simplification[J]. Proceedings of the VLDB Endowment, 2013, 6(10): 949-960.
[26] DENG Ze, HAN Wei, WANG Li-zhe, et al. An efficient online direction-preserving compression approach for trajectory streaming data[J]. Future Generation Computer Systems, 2017, 68: 150-162.
[27] CHEN Min-jie, XU Man-tao, FRÄNTI P. A fast O(N) multiresolution polygonal approximation algorithm for GPS trajectory simplification[J]. IEEE Tansactions on Image Processing, 2012, 21(5): 2770-2785.
[28] WU Lin, XU Yong-jun, WANG Qi, et al. Mapping global shipping density from AIS data[J]. The Journal of Navigation, 2017, 70(1): 67-81.
[29] ZHAO Liang-bin, SHI Guo-you, YANG Jia-xuan. Ship trajectories pre-processing based on AIS data[J]. The Journal of Navigation, 2018, 71(5): 1210-1230.
[30] DOUGLAS D H, PEUCKER T K. Algorithm for the reduction of the number of points required to represent a digital line or its caricature[J]. Cartographer, 1973, 10: 112-122.