[1] MENOUAR H, GUVENC I, AKKAYA K, et al. UAV-enabled intelligent transportation systems for the smart city: applications and challenges[J]. IEEE Communications Magazine, 2017, 55(3): 22-28.
[2] HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation[R]. San Francisco: Uber Elevate, 2016.
[3] THIPPHAVONG P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations[C]∥AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 3676-3681.
[4] BALAKRISHNAN K, POLASTRE J, MOOBERRY J, et al. Blueprint for the sky. The roadmap for the safe integration of autonomous aircraft[R]. Santa Clara Valley: Airbus A3, 2018.
[5] EmbraerX. Flight plan 2030: an air traffic management concept for urban air mobility[R]. Duskamp: EmbraerX, 2019.
[6] LASCARA B, SPENCER T, DEGARMO M, et al. Urban air mobility landscape report[R]. McLean: MITRE, 2018.
[7] XU H X. The future of transportation: white paper on urban air mobility systems[R]. Guangzhou: EHang, 2020.
[8] BAUR S, SCHICKRAM S, HOMULENKO A, et al. Urban air mobility: the rise of a new mode of transportation[R]. Hamburg: Roland Berger, 2018.
[9] ZHAO Jing, XIE Feng-jie. Cognitive and artificial intelligence system for logistics industry[J]. International Journal of Innovative Computing and Applications, 2020, 11(2/3): 84-88.
[10] 吴永鑫.物流无人机在中国农村电商物流市场应用研究[D].深圳:深圳大学,2017.
WU Yong-xin. The research of the application of the logistics unmanned aerial vehicle in the China's rural electricity supplier logistics[D]. Shenzhen: Shenzhen University, 2017.(in Chinese)
[11] 张 丹,吴陈炜,谢安桓.城市交通问题的空中解决方案——自主载人飞行器研究综述[J].无人系统技术,2018,1(2):1-13.
ZHANG Dan, WU Chen-wei, XIE An-huan. Aerial solution for urban traffic problems:overview of autonomous manned aircraft[J]. Unmanned Systems Technology, 2018, 1(2): 1-13.(in Chinese)
[12] REICHE C, MCGILLEN C, SIEGEL J, et al. Are we ready to weather urban air mobility(UAM)?[C]∥IEEE. 2019 Integrated Communications, Navigation and Surveillance Conference(ICNS). New York: IEEE, 2019: 1-7.
[13] SALLEH M, TAN D Y, KOH C H, et al. Preliminary concept of operations(ConOps)for traffic management of unmanned aircraft systems(TM-UAS)in urban environment[C]∥AIAA. Information Systems—AIAA Infotech @ Aerospace Infotech. Reston: AIAA, 2017: 1-13.
[14] Joint DOT/NASA. Concepts studies for future intracity air transportation systems[R]. Cambridge: Massachusetts Institute of Technology, 1970.
[15] DAJANI J S, WARNER D, EPSTEIN D, et al. The role of the helicopter in transportation[R]. Durham: Duke University, 1976.
[16] MOORE M D. Personal air vehicles: a rural/regional and intra-urban on-demand transportation system[J]. Journal of the American Institute of Aeronautics and Astronautics, 2003, 2646: 1-20.
[17] CHAMBERS J R. Innovation in flight: research of the NASA Langley Research Center on revolutionary advanced concepts for aeronautics[R]. Hampton: National Aeronautics and Space Administration(NASA), 2005.
[18] KOPARDEKAR P. Unmanned aerial system(UAS)traffic management(UTM): enabling low-altitude airspace and UAS operations[R]. Hampton: National Aeronautics and Space Administration(NASA), 2014.
[19] JOHNSON W C. UAM coordination and assessment team (UCAT)[R]. Ames: National Aeronautics and Space Administration(NASA), 2019.
[20] VASCIK P D, HANSMAN J. Scaling constraints for urban air mobility operations: air traffic control, ground infrastructure, and noise[C]∥AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 3849-3875.
[21] SHIHAB S A M, WEI Peng, SHI Jie, et al. Optimal eVTOL fleet dispatch for urban air mobility and power grid services[C]∥AIAA. Aviation 2020 Forum. Reston: AIAA, 2020: 1-17.
[22] GEORGE H, WEI Peng. Service-oriented separation assurance for small UAS traffic management[C]∥IEEE. 2019 Integrated Communications, Navigation and Surveillance Conference(ICNS). New York: IEEE, 2019: 1-11.
[23] National Academiesof Sciences. Advancing aerial mobility: a national blueprint[R]. Washington DC: The National Academies Press, 2020.
[24] POLACZYK N, TROMBINO E, WEI P, et al. A review of current technology and research in urban on-demand air mobility applications[C]∥RAM J, KENDRA B. 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium. Washington DC: FAA, 2019: 1-11.
[25] 全 权,李 刚,柏艺琴,等.低空无人机交通管理概览与建议综述[J].航空学报,2020,41(1):6-34.
QUAN Quan, LI Gang, BAI Yi-qin, et al. Low altitude UAV traffic management: an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 6-34.(in Chinese)
[26] SHIHAB S A M, WEI P, RAMIREZ D S J, et al. By schedule or on demand? a hybrid operation concept for urban air mobility[C]∥AIAA. Aviation 2019 Forum. Reston: AIAA, 2019: 1-13.
[27] 联合国人居署.2016世界城市状况报告,城市化与发展:新兴未来[R].内罗毕:联合国人居署,2019.
UN-Habitat. Urbanization and development: emerging futures[R]. Nairobi: UN-Habitat, 2019.(in Chinese)
[28] 北京交通发展研究院.北京市居民公共交通出行特征分析[R].北京:北京交通发展研究院,2019.
Beijing Transport Institute. Analysis on the characteristics ofpublic transportation in Beijing[R]. Beijing: Beijing Transport Institute, 2019.(in Chinese)
[29] VASCIK P D, HANSMAN J. Evaluation of key operational constraints affecting on-demand mobility for aviation in the Los Angeles basin: ground infrastructure, air traffic control and noise[C]∥AIAA. 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 1-20.
[30] VASCIK P D, HANSMAN R J. Constraint identification in on-demand mobility for aviation through an exploratory case study of los angeles[C]∥AIAA. 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 1-26.
[31] 弓永峰,陈俊斌,刘海博,等.产业化加速,氢能时代临近——燃料电池行业专题报告[R].北京:中信证券,2019.
GONG Yong-feng, CHEN Jun-bin, LIU Hai-bo, et al. The era of hydrogen energy is approaching—a special report on fuel cell industry[R]. Beijing: Citic Securities, 2019.(in Chinese)
[32] 王 莉,戴泽华,杨善水,等.电气化飞机电力系统智能化设计研究综述[J] 航空学报,2019,40(2):5-19.
WANG Li, DAI Ze-hua, YANG Shan-shui, et al. Review of intelligent design of electrified aircraft power system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 5-19.(in Chinese)
[33] 中国民用航空局航空器适航审定司.基于运行风险的无人机适航审定指导意见[R].北京:中国民用航空局航空器适航审定司,2019.
Aircraft Airworthiness Certification Department of CAAC. Guidance on UAV airworthiness certification based on operational risk[R]. Beijing: Aircraft Airworthiness Certification Department of CAAC, 2019.(in Chinese)
[34] MUELLER E. Enabling airspace integration for high density urban air mobility[R]. Ames: National Aeronautics and Space Administration(NASA), 2017.
[35] VASCIK P D, BALAKRISHNAN H, HANSMAN J. Assessment of air traffic control for urban air mobility and unmanned systems[C]∥FAA&EUROCONTROL. The 8th International Conference for Research in Air Transportation(ICRAT). Barcelona: EUROCONTROL, 2018: 1-9.
[36] CHO J, YOON Y. How to assess the capacity of urban airspace: a topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 137-149.
[37] VASCIK P D, CHO J, BULUSU V, et al. Geometric approach towards airspace assessment for emerging operations[C]∥AIAA. Thirteenth USA/Europe Air Traffic Management Research and Development Seminar(ATM2019). Reston: AIAA, 2019: 1-12.
[38] ZHU Guo-dong, WEI Peng. Pre-departure planning for urban air mobility flights with dynamic airspace reservation[C]∥AIAA. Aviation 2019 Forum. Reston: AIAA, 2019: 1-11.
[39] ZHU Guo-dong, WEI Peng. Low-altitude UAS traffic coordination with dynamic geofencing[C]∥AIAA. 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 1-16.
[40] SUNIL E, ELLERBROEK J, HOEKSTRA J. Metropolis-urban airspace design[R]. Delft: Technical University of Delft National, 2014.
[41] VIDOSAVLJEVIC A, DELAHAYE D, SUNIL E, et al. Complexity analysis of the concepts of urban airspace design for metropolis project[C]∥EIWAC. 4th ENRI International Workshop on ATM/CNS. Berlin: Springer, 2015: 1-11.
[42] SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. Metropolis: rel1ensities[C]∥EUROCONTROL. 11th USA/EUROPE Air Traffic Management R&D Seminar. Barcelona: EUROCONTROL, 2015: 1-11.
[43] SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. The influence of traffic structure on airspace capacity[C]∥FAA&EUROCONTROL. The 7th International Conference for Research in Air Transportation(ICRAT). Washington DC: FAA, 2016: 1-9.
[44] SUNIL E, ELLERBROEK J, HOEKSTRA J, et al. An analysis of decentralized airspace structure and capacity using fast-time simulations[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(1): 38-51.
[45] BOSSON C, LAUDERDALE T A. Simulation evaluations of an autonomous urban air mobility network management and separation service[C]∥AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-14.
[46] SALLEH M F B, CHI Wan-chao, WANG Zhen-kun, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]∥AIAA. 2018 AIAA Information Systems Infotech@ Aerospace. Reston: AIAA, 2018: 1-12.
[47] ARNTZEN M, AALMOES R, BUSSINK F, et al. Noise computation for future urban air traffic systems[R]. Amsterdam: National Aerospace Laboratory(NLR), 2015.
[48] HOEKSTRA J, MAAS J, SUNIL E. How do layered airspace design parameters affect airspace capacity and safety?[C]∥FAA&EUROCONTROL. The 7th International Conference for Research in Air Transportation(ICRAT). Reston: AIAA, 2016: 1-8.
[49] Booz Allen Hamilton. Urbanair mobility(UAM)market study[R]. Ames: National Aeronautics and Space Administration(NASA), 2018.
[50] GOODRICH K H, BARMORE B. Exploratory analysis of the airspace throughput and sensitivities of an urban air mobility system[C]∥AIAA. 2018 Aviation Technology, Integration, and Opera-tions Conference. Reston: AIAA, 2018: 1-9.
[51] KOCHENDERFER M J, HOLLAND J E, CHRYSSANT-HACOPOULOS J P. Next-generation airborne collision avoidance system[R]. Lexington: Massachusetts Institute of Technology-Lincoln Laboratory, 2012.
[52] YU Xiang, ZHANG You-min. Sense and avoid technologies with applications to unmanned aircraft systems: review and prospects[J]. Progress in Aerospace Sciences, 2015, 74: 152-166.
[53] YANG Xu-xi, WEI Peng. Autonomous on-demand free flight operations in urban air mobility using Monte Carlo tree search[C]∥FAA&EUROCONTROL. The 8th International Conference for Research in Air Transportation(ICRAT). Washington DC: FAA, 2018: 1-8.
[54] YANG Xu-xi, DENG Li-seng, WEI Peng. Multi-agent autonomous on-demand free flight operations in urban air mobility[C]∥AIAA. Aviation 2019 Forum. Reston: AIAA, 2019: 1-13.
[55] FU Meng-ying, ROTHFELD R, ANTONIOU C. Exploring preferences for transportation modes in an urban air mobility environment: Munich case study[J]. Transportation Research Record, 2019(2673): 427-442.
[56] ROTHFELD R, BALAC M, PLOETNER K, et al. Agent-based simulation of urban air mobility[C]∥AIAA. Modeling and Simulation Technologies Conference. Reston: AIAA, 2018: 1-10.
[57] FADHIL D N. A GIS-based analysis for selecting ground infrastructure locations for urban air mobility[D]. Munich: Technical University of Munich, 2018.
[58] VASCIK P, HANSMAN J. Correction: development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors[C]∥AIAA. SciTech 2019 Forum. Reston: AIAA, 2019: 1-26.
[59] 杨秀玉.基于5G移动通信的无人机与民用飞机防相撞技术研究[D].广汉:中国民用航空飞行学院,2019.
YANG Xiu-yu. Research on anti-collision technology based on 5G between UAV and civil aircraft[D]. Guanghan: Civil Aviation Flight University of China, 2019.(in Chinese)
[60] HOSSEINI N, JAMAL H, HAQUE J, et al. UAV command and control, navigation and surveillance: a review of potential 5G and satellite systems[C]∥IEEE. 2019 Aerospace Conference. New York: IEEE, 2019: 1-10.
[61] GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks[J] IEEE Communications Surveys and Tutorials, 2015, 18(2): 1123-1152.
[62] PRADEEP P. Arrival management for eVTOL aircraft in on- demand urban air mobility[D]. Ames: Iowa State University, 2019.
[63] KLEINBEKMAN I, MITICI M A, WEI P. eVTOL arrival sequencing and scheduling for on-demand urban air mobility[C]∥IEEE. IEEE/AIAA Digital Avionics Systems Conference.New York: IEEE, 2018: 1-7.
[64] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J] Nature, 2016, 529(7587): 484.
[65] BRITTAIN M, WEI Peng. Autonomous aircraft sequencing and separation with hierarchical deep reinforcement learning[C]∥FAA&EUROCONTROL. The 8th International Conference for Research in Air Transportation. Barcelona: ICRAT, 2018: 1-8.
[66] XUE Min, RIOS J, SILVA J, et al. Fe3: an evaluation tool for low-altitude air traffic operations[C]∥AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-13.
[67] BELOBABA P, ODONI A, BARNHART C. The global airline industry[R]. Cambridge: John Wiley & Sons, 2015.
[68] BALL M O, HOFFMAN R, ODONI A R, et al. A stochastic integer program with dual network structure and its application to the ground-holding problem[J]. Operations Research, 2003, 51(1): 167-171.
[69] ZHU Guo-dong, WEI Peng, HOFFMAN R, et al. Risk-hedged multistage stochastic programming model for setting flow rates in collaborative trajectory options programs(CTOP)[C]∥AIAA. Science and Technology Forum and Exposition. Reston: AIAA, 2019: 1-16.
[70] HOFFMAN R, HACKNEY B, WEI P, et al. Enhanced stochastic optimization model(ESOM)for setting flow rates in collaborative trajectory options programs(CTOP)[C]∥AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-16.
[71] ZHU Guo-dong, WEI Peng, HOFFMAN R, et al. Centralized disaggregate stochastic allocation models for collaborative trajectory options program(CTOP)[C]∥IEEE. 37th AIAA/IEEE Digital Avionics Systems Conference(DASC). New York: IEEE, 2018: 1-10.
[72] SILVA C, JOHNSON W R, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development[C]∥AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-10.
[73] PRADEEP P, WEI Peng. Energy-efficient arrival with RTA constraint for multirotor eVTOL in urban air mobility[J]. Journal of Aerospace Information Systems, 2019, 16(7): 263-277.
[74] PRADEEP P, WEI Peng. Energy optimal speed profile for arrival of tandem tilt-wing eVTOL aircraft with RTA constraint[C]∥IEEE. 2018 CSAA Guidance, Navigation and Control Conference(CGNCC). New York: IEEE, 2018: 1-6.
[75] 陈志杰.未来空中交通管制系统发展面临的技术挑战[J].指挥信息系统与技术,2016,7(6):1-5.
CHEN Zhi-jie. Technological chanllenges of future air traffic control system development[J]. Control Information System and Technology, 2016, 7(6): 1-5.(in Chinese)
[76] PATHIYIL L, LOW K H, SOON B H, et al. Enabling safe operations of unmanned aircraft systems in an urban environment: a preliminary study[C]∥German Institute of Navigation. The International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications. Berlin: German Institute of Navigation, 2016: 1-10.